1.A meta-learning based method for segmentation of few-shot magnetic resonance images.
Xiaoqing CHEN ; Zhongliang FU ; Yu YAO
Journal of Biomedical Engineering 2023;40(2):193-201
When applying deep learning algorithms to magnetic resonance (MR) image segmentation, a large number of annotated images are required as data support. However, the specificity of MR images makes it difficult and costly to acquire large amounts of annotated image data. To reduce the dependence of MR image segmentation on a large amount of annotated data, this paper proposes a meta-learning U-shaped network (Meta-UNet) for few-shot MR image segmentation. Meta-UNet can use a small amount of annotated image data to complete the task of MR image segmentation and obtain good segmentation results. Meta-UNet improves U-Net by introducing dilated convolution, which can increase the receptive field of the model to improve the sensitivity to targets of different scales. We introduce the attention mechanism to improve the adaptability of the model to different scales. We introduce the meta-learning mechanism, and employ a composite loss function for well-supervised and effective bootstrapping of model training. We use the proposed Meta-UNet model to train on different segmentation tasks, and then use the trained model to evaluate on a new segmentation task, where the Meta-UNet model achieves high-precision segmentation of target images. Meta-UNet has a certain improvement in mean Dice similarity coefficient (DSC) compared with voxel morph network (VoxelMorph), data augmentation using learned transformations (DataAug) and label transfer network (LT-Net). Experiments show that the proposed method can effectively perform MR image segmentation using a small number of samples. It provides a reliable aid for clinical diagnosis and treatment.
Algorithms
;
Image Processing, Computer-Assisted
;
Magnetic Resonance Imaging
2.CT and MRI fusion based on generative adversarial network and convolutional neural networks under image enhancement.
Yunpeng LIU ; Jin LI ; Yu WANG ; Wenli CAI ; Fei CHEN ; Wenjie LIU ; Xianhao MAO ; Kaifeng GAN ; Renfang WANG ; Dechao SUN ; Hong QIU ; Bangquan LIU
Journal of Biomedical Engineering 2023;40(2):208-216
Aiming at the problems of missing important features, inconspicuous details and unclear textures in the fusion of multimodal medical images, this paper proposes a method of computed tomography (CT) image and magnetic resonance imaging (MRI) image fusion using generative adversarial network (GAN) and convolutional neural network (CNN) under image enhancement. The generator aimed at high-frequency feature images and used double discriminators to target the fusion images after inverse transform; Then high-frequency feature images were fused by trained GAN model, and low-frequency feature images were fused by CNN pre-training model based on transfer learning. Experimental results showed that, compared with the current advanced fusion algorithm, the proposed method had more abundant texture details and clearer contour edge information in subjective representation. In the evaluation of objective indicators, Q AB/F, information entropy (IE), spatial frequency (SF), structural similarity (SSIM), mutual information (MI) and visual information fidelity for fusion (VIFF) were 2.0%, 6.3%, 7.0%, 5.5%, 9.0% and 3.3% higher than the best test results, respectively. The fused image can be effectively applied to medical diagnosis to further improve the diagnostic efficiency.
Image Processing, Computer-Assisted/methods*
;
Neural Networks, Computer
;
Tomography, X-Ray Computed
;
Magnetic Resonance Imaging/methods*
;
Algorithms
3.Segmentation of prostate region in magnetic resonance images based on improved V-Net.
Mingyuan GAO ; Shiju YAN ; Chengli SONG ; Zehua ZHU ; Erze XIE ; Boya FANG
Journal of Biomedical Engineering 2023;40(2):226-233
Magnetic resonance (MR) imaging is an important tool for prostate cancer diagnosis, and accurate segmentation of MR prostate regions by computer-aided diagnostic techniques is important for the diagnosis of prostate cancer. In this paper, we propose an improved end-to-end three-dimensional image segmentation network using a deep learning approach to the traditional V-Net network (V-Net) network in order to provide more accurate image segmentation results. Firstly, we fused the soft attention mechanism into the traditional V-Net's jump connection, and combined short jump connection and small convolutional kernel to further improve the network segmentation accuracy. Then the prostate region was segmented using the Prostate MR Image Segmentation 2012 (PROMISE 12) challenge dataset, and the model was evaluated using the dice similarity coefficient (DSC) and Hausdorff distance (HD). The DSC and HD values of the segmented model could reach 0.903 and 3.912 mm, respectively. The experimental results show that the algorithm in this paper can provide more accurate three-dimensional segmentation results, which can accurately and efficiently segment prostate MR images and provide a reliable basis for clinical diagnosis and treatment.
Male
;
Humans
;
Prostate/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
Magnetic Resonance Imaging/methods*
;
Imaging, Three-Dimensional/methods*
;
Prostatic Neoplasms/diagnostic imaging*
4.Colorectal polyp segmentation method based on fusion of transformer and cross-level phase awareness.
Liming LIANG ; Anjun HE ; Chenkun ZHU ; Xiaoqi SHENG
Journal of Biomedical Engineering 2023;40(2):234-243
In order to address the issues of spatial induction bias and lack of effective representation of global contextual information in colon polyp image segmentation, which lead to the loss of edge details and mis-segmentation of lesion areas, a colon polyp segmentation method that combines Transformer and cross-level phase-awareness is proposed. The method started from the perspective of global feature transformation, and used a hierarchical Transformer encoder to extract semantic information and spatial details of lesion areas layer by layer. Secondly, a phase-aware fusion module (PAFM) was designed to capture cross-level interaction information and effectively aggregate multi-scale contextual information. Thirdly, a position oriented functional module (POF) was designed to effectively integrate global and local feature information, fill in semantic gaps, and suppress background noise. Fourthly, a residual axis reverse attention module (RA-IA) was used to improve the network's ability to recognize edge pixels. The proposed method was experimentally tested on public datasets CVC-ClinicDB, Kvasir, CVC-ColonDB, and EITS, with Dice similarity coefficients of 94.04%, 92.04%, 80.78%, and 76.80%, respectively, and mean intersection over union of 89.31%, 86.81%, 73.55%, and 69.10%, respectively. The simulation experimental results show that the proposed method can effectively segment colon polyp images, providing a new window for the diagnosis of colon polyps.
Humans
;
Colonic Polyps/diagnostic imaging*
;
Computer Simulation
;
Electric Power Supplies
;
Semantics
;
Image Processing, Computer-Assisted
5.A survey of loss function of medical image segmentation algorithms.
Ying CHEN ; Wei ZHANG ; Hongping LIN ; Cheng ZHENG ; Taohui ZHOU ; Longfeng FENG ; Zhen YI ; Lan LIU
Journal of Biomedical Engineering 2023;40(2):392-400
Medical image segmentation based on deep learning has become a powerful tool in the field of medical image processing. Due to the special nature of medical images, image segmentation algorithms based on deep learning face problems such as sample imbalance, edge blur, false positive, false negative, etc. In view of these problems, researchers mostly improve the network structure, but rarely improve from the unstructured aspect. The loss function is an important part of the segmentation method based on deep learning. The improvement of the loss function can improve the segmentation effect of the network from the root, and the loss function is independent of the network structure, which can be used in various network models and segmentation tasks in plug and play. Starting from the difficulties in medical image segmentation, this paper first introduces the loss function and improvement strategies to solve the problems of sample imbalance, edge blur, false positive and false negative. Then the difficulties encountered in the improvement of the current loss function are analyzed. Finally, the future research directions are prospected. This paper provides a reference for the reasonable selection, improvement or innovation of loss function, and guides the direction for the follow-up research of loss function.
Algorithms
;
Image Processing, Computer-Assisted
6.Metal artifact reduction and clinical verification in oral and maxillofacial region based on deep learning.
Wei ZENG ; Shan Luo ZHOU ; Ji Xiang GUO ; Wei TANG
Chinese Journal of Stomatology 2023;58(6):540-546
Objective: To construct a kind of neural network for eliminating the metal artifacts in CT images by training the generative adversarial networks (GAN) model, so as to provide reference for clinical practice. Methods: The CT data of patients treated in the Department of Radiology, West China Hospital of Stomatology, Sichuan University from January 2017 to June 2022 were collected. A total of 1 000 cases of artifact-free CT data and 620 cases of metal artifact CT data were obtained, including 5 types of metal restorative materials, namely, fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies. Four hundred metal artifact CT data and 1 000 artifact-free CT data were utilized for simulation synthesis, and 1 000 pairs of simulated artifacts and metal images and simulated metal images (200 pairs of each type) were constructed. Under the condition that the data of the five metal artifacts were equal, the entire data set was randomly (computer random) divided into a training set (800 pairs) and a test set (200 pairs). The former was used to train the GAN model, and the latter was used to evaluate the performance of the GAN model. The test set was evaluated quantitatively and the quantitative indexes were root-mean-square error (RMSE) and structural similarity index measure (SSIM). The trained GAN model was employed to eliminate the metal artifacts from the CT data of the remaining 220 clinical cases of metal artifact CT data, and the elimination results were evaluated by two senior attending doctors using the modified LiKert scale. Results: The RMSE values for artifact elimination of fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies in test set were 0.018±0.004, 0.023±0.007, 0.015±0.003, 0.019±0.004, 0.024±0.008, respectively (F=1.29, P=0.274). The SSIM values were 0.963±0.023, 0.961±0.023, 0.965±0.013, 0.958±0.022, 0.957±0.026, respectively (F=2.22, P=0.069). The intra-group correlation coefficient of 2 evaluators was 0.972. For 220 clinical cases, the overall score of the modified LiKert scale was (3.73±1.13), indicating a satisfactory performance. The scores of modified LiKert scale for fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies were (3.68±1.13), (3.67±1.16), (3.97±1.03), (3.83±1.14), (3.33±1.12), respectively (F=1.44, P=0.145). Conclusions: The metal artifact reduction GAN model constructed in this study can effectively remove the interference of metal artifacts and improve the image quality.
Humans
;
Tomography, X-Ray Computed/methods*
;
Deep Learning
;
Titanium
;
Neural Networks, Computer
;
Metals
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
7.Research status and outlook of deep learning in oral and maxillofacial medical imaging.
Chinese Journal of Stomatology 2023;58(6):533-539
Artificial intelligence, represented by deep learning, has received increasing attention in the field of oral and maxillofacial medical imaging, which has been widely studied in image analysis and image quality improvement. This narrative review provides an insight into the following applications of deep learning in oral and maxillofacial imaging: detection, recognition and segmentation of teeth and other anatomical structures, detection and diagnosis of oral and maxillofacial diseases, and forensic personal identification. In addition, the limitations of the studies and the directions for future development are summarized.
Artificial Intelligence
;
Deep Learning
;
Diagnostic Imaging
;
Radiography
;
Image Processing, Computer-Assisted
8.A semi-supervised material quantitative intelligent imaging algorithm for spectral CT based on prior information perception learning.
Zheng DUAN ; Danyang LI ; Dong ZENG ; Zhaoying BIAN ; Jianhua MA
Journal of Southern Medical University 2023;43(4):620-630
OBJECTIVE:
To propose a semi-supervised material quantitative intelligent imaging algorithm based on prior information perception learning (SLMD-Net) to improve the quality and precision of spectral CT imaging.
METHODS:
The algorithm includes a supervised and a self- supervised submodule. In the supervised submodule, the mapping relationship between low and high signal-to-noise ratio (SNR) data was constructed through mean square error loss function learning based on a small labeled dataset. In the self- supervised sub-module, an image recovery model was utilized to construct the loss function incorporating the prior information from a large unlabeled low SNR basic material image dataset, and the total variation (TV) model was used to to characterize the prior information of the images. The two submodules were combined to form the SLMD-Net method, and pre-clinical simulation data were used to validate the feasibility and effectiveness of the algorithm.
RESULTS:
Compared with the traditional model-driven quantitative imaging methods (FBP-DI, PWLS-PCG, and E3DTV), data-driven supervised-learning-based quantitative imaging methods (SUMD-Net and BFCNN), a material quantitative imaging method based on unsupervised learning (UNTV-Net) and semi-supervised learning-based cycle consistent generative adversarial network (Semi-CycleGAN), the proposed SLMD-Net method had better performance in both visual and quantitative assessments. For quantitative imaging of water and bone materials, the SLMD-Net method had the highest PSNR index (31.82 and 29.06), the highest FSIM index (0.95 and 0.90), and the lowest RMSE index (0.03 and 0.02), respectively) and achieved significantly higher image quality scores than the other 7 material decomposition methods (P < 0.05). The material quantitative imaging performance of SLMD-Net was close to that of the supervised network SUMD-Net trained with labeled data with a doubled size.
CONCLUSIONS
A small labeled dataset and a large unlabeled low SNR material image dataset can be fully used to suppress noise amplification and artifacts in basic material decomposition in spectral CT and reduce the dependence on labeled data-driven network, which considers more realistic scenario in clinics.
Tomography, X-Ray Computed/methods*
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Signal-To-Noise Ratio
;
Perception
9.Application of Novel Down-sampling Method in Retinal Vessel Segmentation.
Zhijin LYU ; Xuefang CHEN ; Xiaofang ZHAO ; Huazhu LIU
Chinese Journal of Medical Instrumentation 2023;47(1):38-42
Accurate segmentation of retinal blood vessels is of great significance for diagnosing, preventing and detecting eye diseases. In recent years, the U-Net network and its various variants have reached advanced level in the field of medical image segmentation. Most of these networks choose to use simple max pooling to down-sample the intermediate feature layer of the image, which is easy to lose part of the information, so this study proposes a simple and effective new down-sampling method Pixel Fusion-pooling (PF-pooling), which can well fuse the adjacent pixel information of the image. The down-sampling method proposed in this study is a lightweight general module that can be effectively integrated into various network architectures based on convolutional operations. The experimental results on the DRIVE and STARE datasets show that the F1-score index of the U-Net model using PF-pooling on the STARE dataset improved by 1.98%. The accuracy rate is increased by 0.2%, and the sensitivity is increased by 3.88%. And the generalization of the proposed module is verified by replacing different algorithm models. The results show that PF-pooling has achieved performance improvement in both Dense-UNet and Res-UNet models, and has good universality.
Algorithms
;
Retinal Vessels
;
Image Processing, Computer-Assisted
10.Evaluation of PET Mainstream Scattering Correction Methods.
Zhipeng SUN ; Ming LI ; Jian MA ; Jinjin MA ; Guodong LIANG
Chinese Journal of Medical Instrumentation 2023;47(1):47-53
OBJECTIVE:
Current mainstream PET scattering correction methods are introduced and evaluated horizontally, and finally, the existing problems and development direction of scattering correction are discussed.
METHODS:
Based on NeuWise Pro PET/CT products of Neusoft Medical System Co. Ltd. , the simulation experiment is carried out to evaluate the influence of radionuclide distribution out of FOV (field of view) on the scattering estimation accuracy of each method.
RESULTS:
The scattering events produced by radionuclide out of FOV have an obvious impact on the spatial distribution of scattering, which should be considered in the model. The scattering estimation accuracy of Monte Carlo method is higher than single scatter simulation (SSS).
CONCLUSIONS
Clinically, if the activity of the adjacent parts out of the FOV is high, such as brain, liver, kidney and bladder, it is likely to lead to the deviation of scattering estimation. Considering the Monte Carlo scattering estimation of the distribution of radionuclide out of FOV, it's helpful to improve the accuracy of scattering distribution estimation.
Positron Emission Tomography Computed Tomography
;
Scattering, Radiation
;
Computer Simulation
;
Brain
;
Monte Carlo Method
;
Phantoms, Imaging
;
Image Processing, Computer-Assisted

Result Analysis
Print
Save
E-mail