1.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
2.Metallic nanomedicine in cancer immunotherapy.
Shixuan LI ; Xiaohu WANG ; Huiyun HAN ; Shuting XIANG ; Mingxi LI ; Guangyu LONG ; Yanming XIA ; Qiang ZHANG ; Suxin LI
Acta Pharmaceutica Sinica B 2025;15(9):4614-4643
Immunotherapy has become a pivotal modality in clinical cancer treatment. However, its effectiveness is limited to a small subset of patients due to the low antigenicity, impaired innate response, and various adaptive immune resistance mechanisms of the tumor microenvironment (TME). Accumulating evidence reveals the critical roles of metal elements in shaping immunity against tumor progression and metastasis. The marriage of metalloimmunotherapy and nanotechnology further presents new opportunities to optimize the physicochemical and pharmacokinetic properties of metal ions in a precise spatiotemporal control manner. Several metallodrugs have demonstrated encouraging immunotherapeutic potential in preliminary studies and are currently undergoing clinical trials at different stages, yet challenges persist in scaling up production and addressing long-term biosafety concerns. This review delineates how metal materials modulate biological activities across diverse cell types to orchestrate antitumor immunity. Moreover, it summarizes recent progress in smart drug delivery-release systems integrating metal elements, either as cargo or vehicles, to enhance antitumor immune responses. Finally, the review introduces current clinical applications of nanomedicines in metalloimmunotherapy and discusses potential challenges that impede its widespread translation into clinical practice.
3.A Case of Infliximab-Induced Paradoxical Psoriasis
Mei WANG ; Wurihan BAO ; Zhijing ZHANG ; Huiyun LI
Medical Journal of Peking Union Medical College Hospital 2025;16(6):1425-1428
Paradoxical psoriasis is a special adverse drug reaction characterized by the new onset, exacerbation, or phenotypic change of psoriatic lesions during treatment with biological agents. In recent years, with the increasing use of biologics, this condition has garnered growing attention from clinicians. The pathogenesis of paradoxical psoriasis is complex and its clinical manifestations are highly heterogeneous. Diagnosis currently relies primarily on clinical features and medication history due to the lack of unified diagnostic criteria. Furthermore, treatment strategies—such as whether to discontinue the original biologic agent or switch therapies—remain controversial, posing significant challenges in clinical management.This article presents a case of paradoxical psoriasis occurring in a patient with ankylosing spondylitis following treatment with the tumor necrosis factor-α inhibitor (TNFi) infliximab. By discussing the clinical characteristics of this case, we aim to enhance clinicians' understanding of this condition, reduce misdiagnosis and underdiagnosis, and provide valuable insights for its diagnosis and treatment.
4.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
5.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
6.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
7.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
8.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
9.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
10.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.

Result Analysis
Print
Save
E-mail