2.Enhanced BBB penetration and microglia-targeting nanomodulator for the two-pronged modulation of chronically activated microglia-mediated neuroinflammation in Alzheimer's disease.
Ya WEI ; Xue XIA ; Xiaorong WANG ; Wenqin YANG ; Siqin HE ; Lulu WANG ; Yongke CHEN ; Yang ZHOU ; Feng CHEN ; Hanmei LI ; Fu PENG ; Guobo LI ; Zheng XU ; Jintao FU ; Huile GAO
Acta Pharmaceutica Sinica B 2025;15(2):1098-1111
Intervention in chronically activated microglia-mediated neuroinflammation is a novel approach to treat Alzheimer's disease (AD). The low permeability of the blood‒brain barrier (BBB) and non-selective distribution in the brain severely restrict AD drugs' disease-modifying efficacy. Here, an immunosuppressant TREM2-lowing antisense oligonucleotides (ASOs) and resveratrol co-loaded cationic liposome is developed as an immune reprogramming nanomodulator modified by acid-cleavable BBB-targeting peptide and microglia-targeting peptide (Res@TcMNP/ASO) for AD management. Res@TcMNP/ASO can enter brain endothelial cells via D-T7 peptides. Then D-T7 undergoes an acid-responsive cleavage, facilitating the escape of Res@MNP/ASO from endo/lysosomes to cross the BBB. The detached Res@MNP/ASO specifically targets M1-phenotype microglia via exposed MG1 peptides to prompt the simultaneous delivery of two drugs into activated microglia. This nanomodulator can not only restore the immune function of microglia through TREM2-lowing ASO but also mitigate the immune stimulation to microglia caused by reactive oxygen species (ROS) through resveratrol, thereby synergistically inhibiting the chronic activation of microglia to alleviate neuroinflammation in AD. Our results indicate that this combination treatment can achieve significant behavioral and cognitive improvements in late APP/PS1 mice.
5.Nose-to-brain delivery of targeted lipid nanoparticles as two-pronged β-amyloid nanoscavenger for Alzheimer's disease therapy.
Yanyan XU ; Xiangtong YE ; Yanfeng DU ; Wenqin YANG ; Fan TONG ; Wei LI ; Qianqian HUANG ; Yongke CHEN ; Hanmei LI ; Huile GAO ; Weiwei ZHANG
Acta Pharmaceutica Sinica B 2025;15(6):2884-2899
Alzheimer's disease (AD), characterized by β-amyloid (Aβ) aggregation and neuroinflammation, remains a formidable clinical challenge. Herein, we present an innovative nose-to-brain delivery platform utilizing lactoferrin (Lf)-functionalized lipid nanoparticles (LNPs) co-encapsulating α-mangostin (α-M) and β-site APP cleaving enzyme 1 (BACE1) siRNA (siB). This dual-modal therapeutic system synergistically combines the neuroprotective and microglia-reprogramming capabilities of α-M with the transcriptional silencing of BACE1 via siB, thereby simultaneously inhibiting Aβ production and enhancing its clearance. Fabricated via a microfluidic approach, the LNPs exhibited uniform particle size distribution, great encapsulation efficiency, and robust colloidal stability. Upon intranasal administration, Lf-functionalization enabled superior brain-targeting efficacy through receptor-mediated transcytosis. In vitro studies demonstrated that α-M reversed Aβ-induced low-density lipoprotein receptor downregulation, promoting microglial phagocytosis and autophagic degradation of Aβ, while siB effectively suppressed BACE1 expression, abrogating Aβ synthesis. In vivo investigations in APP/PS1 transgenic mice revealed remarkable cognitive recovery, substantial Aβ plaque reduction, and alleviation of neuroinflammation and oxidative stress. This intricately designed LNP system, exploiting a non-invasive and efficient nose-to-brain delivery route, provides a biocompatible, synergistic, and transformative therapeutic strategy for the multifaceted management of AD.
7.Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy.
Siqin HE ; Lulu WANG ; Dongxu WU ; Fan TONG ; Huan ZHAO ; Hanmei LI ; Tao GONG ; Huile GAO ; Yang ZHOU
Acta Pharmaceutica Sinica B 2024;14(2):765-780
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.
8.Counteracting Alzheimer's disease via normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.
Xue XIA ; Ya WEI ; Qianqian HUANG ; Yang ZHOU ; Xiaorong WANG ; Yulong SHI ; Xiaotong YANG ; Wenqin YANG ; Yiwei ZHANG ; Ting LEI ; Yuan HUANG ; Hanmei LI ; Meng QIN ; Huile GAO
Acta Pharmaceutica Sinica B 2024;14(12):5464-5478
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy. The resulting siR/PIO@RP enables self-regulation of its distribution in accordance with the physio/pathological state (low/high RAGE expression) of the target site via a feedback loop. siR/PIO@RP is capable of performing intricate tasks and goes beyond the capabilities of single-target therapeutic agents utilized in AD therapy, such as reducing cerebral Aβ load, relieving neuroinflammation, and alleviating the dysfunction of NVU. Overall, the current study provides proof of concept that normalizing NVU holds promise as a means of alleviating AD symptoms.
9.Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.
Meng XIAO ; Zhiqing GUO ; Yating YANG ; Chuan HU ; Qian CHENG ; Chen ZHANG ; Yihan WU ; Yanfen CHENG ; Wui Lau Man BENSON ; Sheung Mei Ng SHAMAY ; George Pak-Heng LEUNG ; Jingjing LI ; Huile GAO ; Jinming ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1089-1099
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Animals
;
Humans
;
Antineoplastic Agents/therapeutic use*
;
Glycyrrhizic Acid/therapeutic use*
;
Liposomes/chemistry*
;
Micelles
;
Nanoparticles/chemistry*
;
Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Nanoparticle Drug Delivery System/therapeutic use*
10.Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages.
Fan TONG ; Haili HU ; Yanyan XU ; Yang ZHOU ; Rou XIE ; Ting LEI ; Yufan DU ; Wenqin YANG ; Siqin HE ; Yuan HUANG ; Tao GONG ; Huile GAO
Acta Pharmaceutica Sinica B 2023;13(8):3471-3488
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.

Result Analysis
Print
Save
E-mail