1.Establishment and Evaluation of Insomnia Animal Models with Heart and Spleen Deficiency
Jieyao DIAO ; Hui XU ; Yunfeng ZHOU ; Zhen WANG ; Xin ZHAO ; Haoguang QU ; Chongyang GUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):234-243
Heart and spleen deficiency syndrome is the most common syndrome type in patients with insomnia. Based on the theory of disease syndrome-combined animal model, this paper used multiple databases to search for the keywords "heart and spleen deficiency", "insomnia", "sleepless", "disease syndrome-combined animal model", "model evaluation", etc. It selected the literature related to the animal model of insomnia with heart and spleen deficiency in the past 20 years to evaluate from the aspects of model establishment, modeling factors, syndrome model, disease model, macro characterization & macro characterization evaluation scale, micro indicators, etc. It is found that the existing animal model of insomnia with heart and spleen deficiency is not completely constructed by the method of disease syndrome combination of disease modeling factors and syndrome modeling factors. In the model using this method, the single establishment factor of heart and spleen deficiency does not conform to the clinical reality of disease, and the selection of the factors for the insomnia model is not closely related to or even separated from the syndrome performance. There is a problem of insufficient quantification of macro representation when the macro representation of the model replaces the symptoms related to heart and spleen deficiency syndrome and insomnia in an equivalent manner for macro representation evaluation, which can be improved according to the quantitative ideas and examples of the existing macro representation and macro representation evaluation scale. There are few specific indicators of heart and spleen deficiency syndrome in micro indicators. The micro research of heart and spleen deficiency syndrome and the essence of other traditional Chinese medicine (TCM) syndromes can be carried out by metabonomics and other technologies combined with the theory of corresponding prescription and syndrome, along the specific related ideas of "prescription and syndrome, treatment principle and selection of prescription, treatment principle and selection of acupoints, as well as therapeutic mechanism and syndrome essence". The future users and researchers of animal models of insomnia with heart and spleen deficiency can get improved methods and ideas through the shortcomings of animal models of heart and spleen deficiency listed in this paper and construct animal models of insomnia with heart and spleen deficiency that are more suitable for clinical practice, so as to establish a more perfect modeling method and evaluation system of disease syndrome-combined animal model.
2.Establishment and Evaluation of Insomnia Animal Models with Heart and Spleen Deficiency
Jieyao DIAO ; Hui XU ; Yunfeng ZHOU ; Zhen WANG ; Xin ZHAO ; Haoguang QU ; Chongyang GUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):234-243
Heart and spleen deficiency syndrome is the most common syndrome type in patients with insomnia. Based on the theory of disease syndrome-combined animal model, this paper used multiple databases to search for the keywords "heart and spleen deficiency", "insomnia", "sleepless", "disease syndrome-combined animal model", "model evaluation", etc. It selected the literature related to the animal model of insomnia with heart and spleen deficiency in the past 20 years to evaluate from the aspects of model establishment, modeling factors, syndrome model, disease model, macro characterization & macro characterization evaluation scale, micro indicators, etc. It is found that the existing animal model of insomnia with heart and spleen deficiency is not completely constructed by the method of disease syndrome combination of disease modeling factors and syndrome modeling factors. In the model using this method, the single establishment factor of heart and spleen deficiency does not conform to the clinical reality of disease, and the selection of the factors for the insomnia model is not closely related to or even separated from the syndrome performance. There is a problem of insufficient quantification of macro representation when the macro representation of the model replaces the symptoms related to heart and spleen deficiency syndrome and insomnia in an equivalent manner for macro representation evaluation, which can be improved according to the quantitative ideas and examples of the existing macro representation and macro representation evaluation scale. There are few specific indicators of heart and spleen deficiency syndrome in micro indicators. The micro research of heart and spleen deficiency syndrome and the essence of other traditional Chinese medicine (TCM) syndromes can be carried out by metabonomics and other technologies combined with the theory of corresponding prescription and syndrome, along the specific related ideas of "prescription and syndrome, treatment principle and selection of prescription, treatment principle and selection of acupoints, as well as therapeutic mechanism and syndrome essence". The future users and researchers of animal models of insomnia with heart and spleen deficiency can get improved methods and ideas through the shortcomings of animal models of heart and spleen deficiency listed in this paper and construct animal models of insomnia with heart and spleen deficiency that are more suitable for clinical practice, so as to establish a more perfect modeling method and evaluation system of disease syndrome-combined animal model.
3.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
4.Determination of radionuclide levels in food and assessment of effective dose in Beijing, China
Huan WANG ; Yaru SUN ; Meinan YAO ; Yongzhong MA ; Shuchang YAN ; Hui ZHANG ; Zhen WU ; Bin BAI
Chinese Journal of Radiological Health 2025;34(5):733-739
Objective To investigate the levels of radionuclides in food in Beijing, China, and assess the committed effective dose to local residents from food intake. Methods From 2021 to 2022, a total of 65 food samples across 7 categories were collected in Beijing. The activity concentrations of radionuclides, including 137Cs, 210Pb, 238U, 228Ra, 226Ra, 40K, 90Sr, 210Po, 3H and 14C, were measured using gamma spectrometry and radiochemical methods. By combining the monitoring results with dietary consumption data of Beijing residents and the internal dose coefficients for Chinese reference adult phantom, the committed effective dose was estimated. Results The levels of radionuclides in food in Beijing were within the normal background range, consistent with related surveys in China and abroad, with activity concentrations below national standard limits. No significant differences were found in the activity concentrations of 137Cs, 238U, 228Ra, 226Ra and 40K between food samples collected from key areas and those from control areas (P > 0.05). The committed effective doses calculated according to internal dose coefficients for Chinese reference adult male phantom and GB 18871-2002 were 0.26 mSv and 0.19 mSv, respectively. Based on the Chinese reference adult male phantom, the majority of the committed effective dose was attributed to 210Pb (45.1%), 228Ra (37.1%), 210Po (12.3%), and 226Ra (4.7%). Conclusion The levels of radionuclides in food in Beijing fluctuated within the background range, resulting in a low radiation dose burden to the population.
5.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
6.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
7.Biomarkers of hepatotoxicity in rats induced by aqueous extract of Dictamni Cortex based on urine metabolomics.
Hui-Juan SUN ; Rui GAO ; Meng-Meng ZHANG ; Ge-Yu DENG ; Lin HUANG ; Zhen-Dong ZHANG ; Yu WANG ; Fang LU ; Shu-Min LIU
China Journal of Chinese Materia Medica 2025;50(9):2526-2538
This paper aimed to use non-targeted urine metabolomics to reveal the potential biomarkers of toxicity in rats with hepatic injury induced by aqueous extracts of Dictamni Cortex(ADC). Forty-eight SD rats were randomly assigned to a blank group and high-dose, medium-dose, and low-dose ADC groups, with 12 rats in each group(half male and half female), and they were administered orally for four weeks. The hepatic injury in SD rats was assessed by body weight, liver weight/index, biochemical index, L-glutathione(GSH), malondialdehyde(MDA), and pathological alterations. The qPCR was utilized to determine the expression of metabolic enzymes in the liver and inflammatory factors. Differential metabolites were screened using principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), followed by a metabolic pathway analysis. The Mantel test was performed to assess differential metabolites and abnormally expressed biochemical indexes, obtaining potential biomarkers. The high-dose ADC group showed a decrease in body weight and an increase in liver weight and index, resulting in hepatic inflammatory cell infiltration and hepatic steatosis. In addition, this group showed elevated levels of MDA, cytochrome P450(CYP) 3A1, interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α), as well as lower levels of alanine transaminase(ALT) and GSH. A total of 76 differential metabolites were screened from the blank and high-dose ADC groups, which were mainly involved in the pentose phosphate pathway, tryptophan metabolism, purine metabolism, pentose and glucuronic acid interconversion, galactose metabolism, glutathione metabolism, and other pathways. The Mantel test identified biomarkers of hepatotoxicity induced by ADC in SD rats, including glycineamideribotide, dIDP, and galactosylglycerol. In summary, ADC induced hepatotoxicity by disrupting glucose metabolism, ferroptosis, purine metabolism, and other pathways in rats, and glycineamideribotide, dIDP, and galactosylglycerol could be employed as the biomarkers of its toxicity.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Biomarkers/metabolism*
;
Liver/metabolism*
;
Drugs, Chinese Herbal/adverse effects*
;
Female
;
Chemical and Drug Induced Liver Injury/metabolism*
;
Glutathione/metabolism*
;
Humans
8.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
9.Development of core outcome set for traditional Chinese medicine interventions in diabetic peripheral neuropathy.
Lu-Jie WANG ; Liang-Zhen YOU ; Chang CHANG ; Yu-Meng GENG ; Jin-Dong ZHAO ; Zhao-Hui FANG ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2025;50(14):4071-4080
This study developed a core outcome set(COS) for traditional Chinese medicine(TCM) interventions in diabetic peripheral neuropathy(DPN), standardizing evaluation metrics for TCM efficacy and providing a new framework for DPN treatment and management. A systematic search was conducted across databases, including CNKI, Wanfang, and PubMed, targeting clinical trial literature published between January 1, 2013, and January 1, 2023. The search focused on extracting outcome indicators and measurement tools used in TCM treatments for DPN. Retrospective data collection was performed from January 2018 to June 2023, involving 200 DPN patients hospitalized at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Additionally, semi-structured interviews were conducted with inpatients, outpatients, their families, and nursing staff to further refine and enhance the list of outcome indicators. After two rounds of Delphi questionnaire survey and consensus meeting, a consensus was reached. The study initially retrieved 3 421 publications, of which 170 met the inclusion criteria after review. These publications, combined with retrospective analysis and semi-structured interviews, supplemented the list of indicators. After two rounds of Delphi surveys, experts agreed on 24 indicators and 6 measurement tools. The final COS determined by expert consensus meeting included 5 domains and 13 outcome indicators: neurological function signs, quality of life, TCM syndrome score, nerve conduction velocity, current perception threshold test, fasting blood glucose, 2 h postprandial blood glucose, glycated hemoglobin, complete blood count, urinalysis, liver function test, kidney function test, and electrocardiogram.
Humans
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Retrospective Studies
;
Treatment Outcome
;
Male
;
Female
10.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family

Result Analysis
Print
Save
E-mail