1.Exploration in Pathological Mechanisms of Myocardial Infarction and Osteoporosis Based on "Heart-bone" Axis Theory
Yuzhuo ZHANG ; Qi SHANG ; Hui REN ; Bin LIU ; Jingzhi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):251-257
Myocardial infarction (MI) and osteoporosis (OP), as two prevalent metabolic diseases with high morbidity and mortality rates, are respectively characterized by cardiovascular system dysfunction and bone homeostasis imbalance, collectively posing significant global public health challenges. While clinically often considered as independent diseases, recent studies have revealed shared pathological mechanisms between the two. This study initiated its exploration from the traditional Chinese medicine concept of the "heart-bone" axis, systematically analyzing the correlation between MI and OP from perspectives including hemodynamics, neuroendocrinology, calcium homeostasis, inflammation and vascular injury, as well as hormone levels. By discussing the pathological mechanisms of "heart disease affecting the bones and bone disease affecting the heart", the study also elucidated advancements in both Western and traditional Chinese medicine treatments. The goal is to provide novel insights and methodologies for the prevention and treatment of "heart-bone comorbidities", thereby facilitating comprehensive management of cardiovascular and skeletal diseases.
2.Exploration in Pathological Mechanisms of Myocardial Infarction and Osteoporosis Based on "Heart-bone" Axis Theory
Yuzhuo ZHANG ; Qi SHANG ; Hui REN ; Bin LIU ; Jingzhi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):251-257
Myocardial infarction (MI) and osteoporosis (OP), as two prevalent metabolic diseases with high morbidity and mortality rates, are respectively characterized by cardiovascular system dysfunction and bone homeostasis imbalance, collectively posing significant global public health challenges. While clinically often considered as independent diseases, recent studies have revealed shared pathological mechanisms between the two. This study initiated its exploration from the traditional Chinese medicine concept of the "heart-bone" axis, systematically analyzing the correlation between MI and OP from perspectives including hemodynamics, neuroendocrinology, calcium homeostasis, inflammation and vascular injury, as well as hormone levels. By discussing the pathological mechanisms of "heart disease affecting the bones and bone disease affecting the heart", the study also elucidated advancements in both Western and traditional Chinese medicine treatments. The goal is to provide novel insights and methodologies for the prevention and treatment of "heart-bone comorbidities", thereby facilitating comprehensive management of cardiovascular and skeletal diseases.
3.Effect of targeted silencing of DNMT3A on collagen deposition, proliferation and migration activity of mouse lung fibroblasts
Xianchen Wang ; Junbo You ; Hui Ling ; Jiahao Fan ; Qi Chen ; Hui Tao ; Jiming Sha
Acta Universitatis Medicinalis Anhui 2025;60(1):66-72
Objective:
To investigate the effect of targeted silencing of DNA methyltransferase 3A(DNMT3A) on collagen deposition, proliferation and migration activity of mouse lung fibroblasts(PFs).
Methods:
In order to ensure the proliferation and migration activity of primary fibroblasts, the lung tissues of neonatal C57 suckling mice were taken, PFs were extracted after being sheared, and the morphology was observed and identified under the microscope. PFs cells were activated by 5 ng/ml TGF-β1for 24 h after cell attachment, and DNMT3A silencing model was constructed by small interfering RNA; The experiment was divided into control group, TGF-β1group, TGF-β1+ siRNA-NC group and TGF-β1+ siRNA-DNMT3A group. The protein expressions of DNMT3A, α-smooth muscle actin(α-SMA) and Collagen Ⅰ were detected by Western blot; Real time quantitative reverse transcription polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression changes ofDNMT3A,α-SMAandCollagenⅠ. The proliferation ability of PFs was detected by CCK-8 and EdU staining; the migration ability of PFs was detected by scratch test and Transwell migration test.
Results:
Compared with the control group, TGF-β1induced the increase of DNMT3A in the activated PFs cell group(P<0.01), the protein and mRNA levels of fibrosis and proliferation related indicators α-SMA and Collagen Ⅰ also increased(allP<0.05), and the proliferation and migration ability of PFs increased(allP<0.000 1). Compared with the siRNA-NC group, the protein expression levels of DNMT3A(P<0.000 1) and related indicators α-SMA(P<0.01) and Collagen Ⅰ(P<0.01) significantly decreased in the DNMT3A silencing group by Western blot, and the mRNA levels ofDNMT3A,α-SMAandCollagenⅠby RT-qPCR also decreased(allP<0.001), and the proliferation(P<0.01) and migration ability(P<0.05) of PFs cells decreased compared with the control group.
Conclusion
Silencing DNMT3A can inhibit the deposition of collagen and the proliferation of PFs. DNMT3A can promote the proliferation and migration of PFs, and then promote the activation of PFs and the development of pulmonary fibrosis. This process may be regulated by DNA methylation modification.
4.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
5.Guidelines of ethics review for clinical application of medical technology
Jiyin ZHOU ; Mingjie ZI ; Qi LU ; Hui JIANG
Chinese Medical Ethics 2025;38(1):15-22
Access to the clinical application of medical technology is one of the core institutional contents of medical quality management, involving medical quality assurance, the achievement of patient safety goals, and medical service satisfaction. Medical technology is only permitted for clinical use after its safety and effectiveness have been verified through clinical research, as well as evaluated and reviewed by the medical technology clinical application management committee and ethics committee of this medical and health institution. Based on the relevant laws, regulations, and ethical principles, combined with the experience of ethical review in the clinical application of medical technology from some medical and health institutions, a thematic discussion was held to formulate ethical review guidelines for the clinical application of medical technology for references. These guidelines elaborated on the management system for access to the clinical application of medical technology in medical and health institutions, the system of ethics committees and the requirements of review norms, technical plans and their review points, key points for the implementation of informed consent, technical teams and conditions, and other aspects.
6.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
7.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
8.Compatibility Principle and Efficacy Characteristics of Fuzi Shanzhuyutang from Perspective of Tangye Jingfa Tu
Xuxiao LYU ; Mingyue QI ; Hui ZHANG ; Rui JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):210-216
Tangye Jingfa Tu is an important content in the ancient book Fuxingjue from Dunhuang, implying the fundamental principles of formula compatibility in traditional Chinese medicine (TCM). Our research group has delved into nearly 200 formulas (both classical and contemporary formulas) recorded in the Fangjixue under the theoretical framework of the deficiency or excess syndrome of five Zang-organs together with the reinforcing and reducing effects of Chinese medicinal materials of five flavors. We have initially elucidated the essential principles of the correspondence between formulas and syndromes, revealing the deep-level logic of medicinal material selection and compatibility, thus enriching the understanding about the core characteristics and essence of the diseases and syndromes targeted by formulas. The lunar year of 2024 is Jia Chen year. The formula recorded in Sanyin Jiyi Bingzheng Fanglun for treating the epidemic diseases characterized by excessive earth, prevalent dampness and wetness, and invasion of pathogenic factors into the kidney water in Jia Chen year is Fuzi Shanzhuyutang. Therefore, elucidating the compatibility principle of Fuzi Shanzhuyutang is of great significance for clinical prescription and medication modification in Jia Chen year. According to the Tangye Jingfa Tu theory on the deficiency or excess of syndrome of five Zang-organs and the reinforcing and reducing effects of Chinese medicinal materials of five flavors, this article dissects Fuzi Shanzhuyutang regarding the etiology and pathogenesis of the main indications, as well as the five-element properties and efficacy characteristics of Chinese medicinal materials constituting this formula. It explains the compatibility principles of Fuzi Shanzhuyutang and puts forward suggestions for modifying the formula to address different indications, providing a reference for guiding clinical syndrome differentiation and treatment.
9.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
10.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.


Result Analysis
Print
Save
E-mail