1.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
2.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
3.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
4.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
5.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
6.Effects of Rhodiola rosea injection on intrapulmonary shunt and blood IL-6 and TNF-α levels during single lung ventilation in patients undergoing radical resection of esophageal cancer
Xi LIU ; Huan HU ; Jing FANG ; Lu HUANG ; Xiangyang CHENG
Journal of Southern Medical University 2024;44(4):706-711
Objective To explore the effects of Rhodiola rosea injection on pulmonary shunt and serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels during single lung ventilation in patients undergoing radical resection of esophageal cancer. Methods Forty-six patients undergoing radical operation for esophageal cancer were randomized equally into control group and Rhodiola rosea injection group. In the Rhodiola group, 10 mL of Rhodiola rosea injection was added into 250 mL of normal saline or 5% glucose solution for slow intravenous infusion, and normal saline of the same volume was used in the control group after the patients entered the operation room. At T0, T1 and T3, PaO2 of the patient was recorded and 2 mL of deep venous blood was collected for determination of serum TNF-α and IL-6 levels. The incidence of postoperative atelectasis of the patients was recorded. Results Compared with those in the control group, the patients receiving Rhodiola rosea injection had significantly higher PaO2 and Qs/Qt at T1 and T2 (P<0.05) and lower serum IL-6 and TNF-α levels at T3 (P<0.05). No significant difference in the incidence of postoperative atelectasis was observed between the two groups (P>0.05). Conclusion Rhodiola rosea injection before anesthesia induction can reduce intrapulmonary shunt during single lung ventilation, improve oxygenation, reduce serum IL-6 and TNF-α levels, and alleviate intraoperative lung injury in patients undergoing radical resection of esophageal cancer.
7.Safety of early antiplatelet therapy for non-cardioembolic mild stroke patients with thrombocytopenia
Dongjuan XU ; Huan ZHOU ; Mengmeng HU ; Yilei SHEN ; Hongfei LI ; Lianyan WEI ; Jing XU ; Zhuangzhuang JIANG ; Xiaoli SHAO ; Zhenhua XI ; Songbin HE ; Min LOU ; Shaofa KE
Journal of Zhejiang University. Medical sciences 2024;53(2):175-183
Objective:To investigate the safety of early antiplatelet therapy for non-cardioembolic mild stroke patients with thrombocytopenia.Methods:Data of acute ischemic stroke patients with baseline National Institutes of Health Stroke Scale(NIHSS)score≤3 and a platelet count<100×109/L were obtained from a multicenter register.Those who required anticoagulation or had other contraindications to antiplatelet therapy were excluded.Short-term safety outcomes were in-hospital bleeding events,while the long-term safety outcome was a 1-year all-cause death.The short-term neurological outcomes were evaluated by modified Rankin scale(mRS)score at discharge.Results:A total of 1868 non-cardioembolic mild stroke patients with thrombocytopenia were enrolled.Multivariate regression analyses showed that mono-antiplatelet therapy significantly increased the proportion of mRS score of 0-1 at discharge(OR=1.657,95%CI:1.253-2.192,P<0.01)and did not increase the risk of intracranial hemorrhage(OR=2.359,95%CI:0.301-18.503,P>0.05),compared with those without antiplatelet therapy.However,dual-antiplatelet therapy did not bring more neurological benefits(OR=0.923,95%CI:0.690-1.234,P>0.05),but increased the risk of gastrointestinal bleeding(OR= 2.837,95%CI:1.311-6.136,P<0.01)compared with those with mono-antiplatelet therapy.For patients with platelet counts≤75×109/L and>90×109/L,antiplatelet therapy significantly improved neurological functional outcomes(both P<0.05).For those with platelet counts(>75-90)×109/L,antiplatelet therapy resulted in a significant improvement of 1-year survival(P<0.05).For patients even with concurrent coagulation abnormalities,mono-antiplatelet therapy did not increase the risk of various types of bleeding(all P>0.05)but improved neurological functional outcomes(all P<0.01).There was no significant difference in the occurrence of bleeding events,1-year all-cause mortality risk,and neurological functional outcomes between aspirin and clopidogrel(all P>0.05).Conclusions:For non-cardioembolic mild stroke patients with thrombocytopenia,antiplatelet therapy remains a reasonable choice.Mono-antiplatelet therapy has the same efficiency as dual-antiplatelet therapy in neurological outcome improvement with lower risk of gastrointestinal bleeding.
8.Case report of children with Addison′s disease complicated by torsades de pointes
Juanli WANG ; Jian LI ; Hongyu XIAO ; Huan LI ; Xi LEI ; Tao WANG
Chinese Journal of Applied Clinical Pediatrics 2024;39(10):783-785
This article retrospectively analyzes the clinical data of a patient with Addison′s disease complicated by torsades de pointes treated in Children′s Hospital Affiliated to Xi′an Jiaotong University in July 2021.The patient, female, aged 12 years, was hospitalized multiple times due to recurrent seizures, syncope, and coma, and had been successively diagnosed with fulminant myocarditis, supraventricular tachycardia, etc.She was later transferred to Children′s Hospital Affiliated to Xi′an Jiaotong University, where during hospitalization, electrocardiogram (ECG) monitoring revealed torsades de pointes associated with the attacks.The ECG between attacks showed a prolonged Q-T interval, with the longest Q-Tc of 564 ms.Echocardiography suggested a slight enlargement of the left ventricle and reduced left ventricular ejection fraction.After a comprehensive examination, she was diagnosed with Addison′s disease.Treatment with intravenous Hydrocortisone for 3 days, followed by oral Hydrocortisone tablets, was administered sequentially.After treatment, symptoms such as syncope did not recur, and the Q-T interval gradually returned to normal.After continued treatment for 1 year, echocardiography revealed no abnormality.This report aims to enhance pediatricians′ understanding and research on the relationship between pediatric endocrine diseases and arrhythmias.
9.Effects of Rhodiola rosea injection on intrapulmonary shunt and blood IL-6 and TNF-α levels during single lung ventilation in patients undergoing radical resection of esophageal cancer
Xi LIU ; Huan HU ; Jing FANG ; Lu HUANG ; Xiangyang CHENG
Journal of Southern Medical University 2024;44(4):706-711
Objective To explore the effects of Rhodiola rosea injection on pulmonary shunt and serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels during single lung ventilation in patients undergoing radical resection of esophageal cancer. Methods Forty-six patients undergoing radical operation for esophageal cancer were randomized equally into control group and Rhodiola rosea injection group. In the Rhodiola group, 10 mL of Rhodiola rosea injection was added into 250 mL of normal saline or 5% glucose solution for slow intravenous infusion, and normal saline of the same volume was used in the control group after the patients entered the operation room. At T0, T1 and T3, PaO2 of the patient was recorded and 2 mL of deep venous blood was collected for determination of serum TNF-α and IL-6 levels. The incidence of postoperative atelectasis of the patients was recorded. Results Compared with those in the control group, the patients receiving Rhodiola rosea injection had significantly higher PaO2 and Qs/Qt at T1 and T2 (P<0.05) and lower serum IL-6 and TNF-α levels at T3 (P<0.05). No significant difference in the incidence of postoperative atelectasis was observed between the two groups (P>0.05). Conclusion Rhodiola rosea injection before anesthesia induction can reduce intrapulmonary shunt during single lung ventilation, improve oxygenation, reduce serum IL-6 and TNF-α levels, and alleviate intraoperative lung injury in patients undergoing radical resection of esophageal cancer.
10.Multicomponent Quantitative Analysis Model of Near Infrared Spectroscopy Based on Convolution Neural Network
Shui YU ; Ke-Wei HUAN ; Lei WANG ; Xiao-Xi LIU ; Xue-Yan HAN
Chinese Journal of Analytical Chemistry 2024;52(5):695-705
Near infrared spectroscopy(NIRS)has emerged as an indispensable analytical technology for quality monitoring in industrial and agricultural production.It is widely used in quantitative analysis in areas such as food,agriculture and medicine.To meet the requirements of industrial and agricultural production,it is particularly important to develop a NIRS quantitative analysis model that can predict the multicomponent of different samples.In this study,the multicomponent quantitative analysis model of NIRS based on convolution neural network(MulCoSpecNet)was proposed.MulCoSpecNet was composed of an encoding and decoding module,an expert module,a gate module,a multicomponent quantitative prediction module,and a hyperparameter optimizer.The spectral noise and random errors were mitigated,and the signal-to-noise ratio was enhanced through up-sampling and down-sampling in the encoding and decoding module.Diverse weightings were employed by the expert module and gate module to construct distinct sub-spectra.The model prediction accuracy and generalization ability were enhanced by the multicomponent quantitative prediction module,which employed convolutional and pooling operations.The hyperparameters in the hyperparameter space were synchronously optimized by the hyperparameter optimizer.By taking public NIRS datasets of grain and corn as examples,the prediction results of MulCoSpecNet were compared with partial least squares(PLS),extreme learning machine(ELM),support vector regression(SVM)and back propagation neural network(BP).The results showed that compared to PLS,the prediction accuracy of MulCoSpecNet to grain and corn were increased by 25.5%?45.2%and 10.0%?35.7%,respectively.Compared to ELM,the prediction accuracy of MulCoSpecNet were increased by 17.8%?38.6%and 18.2%?37.2%,respectively.Compared to SVM,the prediction accuracy of MulCoSpecNet were increased by 33.6%?47.0%and 31.3%?50.7%,respectively.Compared to BP,the prediction accuracy of MulCoSpecNet were increased by 2.0%?58.5%and 29.6%?48.6%,respectively.The issues of low prediction accuracy and poor generalization ability were effectively solved by the MulCoSpecNet,which was a NIRS multicomponent prediction model based on convolutional neural network.It provided a theoretical foundation for establishing non-destructive and high-precision NIRS multicomponent quantitative analysis model.

Result Analysis
Print
Save
E-mail