1.Phlorizin Ameliorates Glucose and Lipid Metabolism Disorders in T2DM Rats by Modulating IRS-1/PI3K/Akt Signaling Pathway
Nuer AILI ; Qingyu CAO ; Huan LIU ; Junwei HE ; Weihong ZHONG ; Lan CAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):139-148
ObjectiveTo observe the pharmacodynamic efficacy of phlorizin in improving hepatic glycolipid metabolism disorders in type 2 diabetic mellitus (T2DM) rats and to explore its mechanism of action based on the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. MethodsA high-fat diet and streptozotocin (STZ) were used to establish T2DM rat models. The rats were randomly assigned into six groups: the blank control group, model group, metformin group (300 mg·kg-1), and phlorizin high-dose (100 mg·kg-1) and low-dose groups (25 mg·kg-1). The rats were given intragastric administration for 6 weeks. The changes in body weight and fasting blood glucose (FBG) were observed, and the oral glucose tolerance test (OGTT) was carried out. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycated serum protein (GSP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were detected by an automatic biochemical analyzer. The levels of fasting insulin (FINS), interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by the biochemical assays. The pancreas index, liver index, and insulin resistance index were calculated. Hematoxylin-eosin (HE) staining was used to evaluate the pathological changes in liver and pancreatic tissues. The immunofluorescence method was used to detect the changes in insulin and glucagon in pancreatic tissue. Western blot was used to detect the expression of related proteins in the IRS-1/PI3K/Akt pathway of liver tissue and its downstream glycogen synthase kinase-3β (GSK-3β) and forkhead box transcription factor O1 (FoxO1) proteins. ResultsCompared with the blank control group, the body weight of rats in the model group continued to decrease, while the FBG level increased significantly. The area under the OGTT blood glucose curve (AUC), GSP, TC, TG, LDL-C, IL-1β, IL-6, TNF-α, MDA, pancreatic index and liver index increased significantly, while the levels of HDL-C, SOD, and FINS decreased significantly (P0.05, P0.01). Histological results showed that the pancreatic islets of rats in the model group exhibited atrophy and severe structural abnormalities. The insulin-positive β-cells decreased significantly (P0.01), while the glucagon-positive α-cells increased significantly (P0.01). Inflammatory cell infiltration and partial necrosis were observed in the liver tissues of the model group rats. The expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 proteins in the liver of the model group increased significantly (P0.01), while the expressions of p-PI3K/PI3K and p-Akt/Akt proteins decreased significantly (P0.01). Compared with the model group, the diabetic symptoms of rats in all administration groups were improved. The changes in body weight and FBG were close to those of the blank control group. The levels of OGTT-AUC, GSP, TC, TG, LDL-C, MDA, IL-1β, IL-6, TNF-α and the pancreatic index, liver index were obviously reduced (P0.05, P0.01), while the levels of HDL-C, SOD, and FINS obviously increased (P0.05, P0.01). The pathological changes of the pancreas and liver in rats in all treatment groups were effectively improved. The insulin-positive β-cells in the pancreas increased significantly (P0.01), while the glucagon-positive α-cells decreased significantly (P0.01). The protein expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 in the liver were significantly reduced (P0.01), while the protein expressions of p-PI3K/PI3K and p-Akt/Akt significantly increased (P0.01). ConclusionPhlorizin reversed the weight loss and abnormal increase of FBG in T2DM rats, improved blood lipid profiles, oxidative stress, and inflammatory levels, alleviated insulin resistance, and had certain protective effects on the liver and pancreas. The hypoglycemic mechanism may involve regulating the IRS-1/PI3K/Akt signaling pathway to inhibit the activities of GSK-3β and FoxO1, thereby promoting liver glycogen synthesis and suppressing hepatic gluconeogenesis, ultimately improving glycolipid metabolism disorders.
2.Phlorizin Ameliorates Glucose and Lipid Metabolism Disorders in T2DM Rats by Modulating IRS-1/PI3K/Akt Signaling Pathway
Nuer AILI ; Qingyu CAO ; Huan LIU ; Junwei HE ; Weihong ZHONG ; Lan CAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):139-148
ObjectiveTo observe the pharmacodynamic efficacy of phlorizin in improving hepatic glycolipid metabolism disorders in type 2 diabetic mellitus (T2DM) rats and to explore its mechanism of action based on the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. MethodsA high-fat diet and streptozotocin (STZ) were used to establish T2DM rat models. The rats were randomly assigned into six groups: the blank control group, model group, metformin group (300 mg·kg-1), and phlorizin high-dose (100 mg·kg-1) and low-dose groups (25 mg·kg-1). The rats were given intragastric administration for 6 weeks. The changes in body weight and fasting blood glucose (FBG) were observed, and the oral glucose tolerance test (OGTT) was carried out. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycated serum protein (GSP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were detected by an automatic biochemical analyzer. The levels of fasting insulin (FINS), interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by the biochemical assays. The pancreas index, liver index, and insulin resistance index were calculated. Hematoxylin-eosin (HE) staining was used to evaluate the pathological changes in liver and pancreatic tissues. The immunofluorescence method was used to detect the changes in insulin and glucagon in pancreatic tissue. Western blot was used to detect the expression of related proteins in the IRS-1/PI3K/Akt pathway of liver tissue and its downstream glycogen synthase kinase-3β (GSK-3β) and forkhead box transcription factor O1 (FoxO1) proteins. ResultsCompared with the blank control group, the body weight of rats in the model group continued to decrease, while the FBG level increased significantly. The area under the OGTT blood glucose curve (AUC), GSP, TC, TG, LDL-C, IL-1β, IL-6, TNF-α, MDA, pancreatic index and liver index increased significantly, while the levels of HDL-C, SOD, and FINS decreased significantly (P0.05, P0.01). Histological results showed that the pancreatic islets of rats in the model group exhibited atrophy and severe structural abnormalities. The insulin-positive β-cells decreased significantly (P0.01), while the glucagon-positive α-cells increased significantly (P0.01). Inflammatory cell infiltration and partial necrosis were observed in the liver tissues of the model group rats. The expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 proteins in the liver of the model group increased significantly (P0.01), while the expressions of p-PI3K/PI3K and p-Akt/Akt proteins decreased significantly (P0.01). Compared with the model group, the diabetic symptoms of rats in all administration groups were improved. The changes in body weight and FBG were close to those of the blank control group. The levels of OGTT-AUC, GSP, TC, TG, LDL-C, MDA, IL-1β, IL-6, TNF-α and the pancreatic index, liver index were obviously reduced (P0.05, P0.01), while the levels of HDL-C, SOD, and FINS obviously increased (P0.05, P0.01). The pathological changes of the pancreas and liver in rats in all treatment groups were effectively improved. The insulin-positive β-cells in the pancreas increased significantly (P0.01), while the glucagon-positive α-cells decreased significantly (P0.01). The protein expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 in the liver were significantly reduced (P0.01), while the protein expressions of p-PI3K/PI3K and p-Akt/Akt significantly increased (P0.01). ConclusionPhlorizin reversed the weight loss and abnormal increase of FBG in T2DM rats, improved blood lipid profiles, oxidative stress, and inflammatory levels, alleviated insulin resistance, and had certain protective effects on the liver and pancreas. The hypoglycemic mechanism may involve regulating the IRS-1/PI3K/Akt signaling pathway to inhibit the activities of GSK-3β and FoxO1, thereby promoting liver glycogen synthesis and suppressing hepatic gluconeogenesis, ultimately improving glycolipid metabolism disorders.
3.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
4.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
5.Targeted inhibition of macrophage STING signaling alleviates inflammatory injury and ventricular remodeling in acute myocardial infarction.
Huan YAO ; Qingman HE ; Shujun WEI ; Li XIANG ; Yuanyuan LUO ; Cong HUANG ; Weiwei LIU ; Chuan ZHENG ; Xueping LI ; Yongxiang GAO
Acta Pharmaceutica Sinica B 2025;15(8):4030-4046
Mitochondrial DNA (mtDNA) acts as a damage-associated molecular pattern to activate the stimulator of interferon genes (STING) signaling in macrophages, promoting tissue inflammation. However, its role in acute myocardial infarction (AMI) remains unclear. Macrophage-specific Sting1 knockout mice were used to validate STING's pathological role in AMI. Cardiac and liver mtDNA were used to activate macrophages in co-culture systems with cardiomyocytes to assess fibrosis and hypertrophy. Panaxatriol saponin (PTS) was tested for its ability to block mtDNA-driven macrophage activation and subsequent cardiomyocyte damage. STING-PTS binding ability was analyzed. AMI rats received PTS to evaluate its effects on myocardial inflammation and ventricular remodeling. In vivo, macrophage-specific Sting1 knockout reduced myocardial inflammation and injury after AMI. In vitro, mtDNA-activated macrophages induced cardiomyocyte fibrosis and hypertrophy through STING signaling. PTS suppressed mtDNA-driven macrophage activation by directly binding STING, thereby blocking inflammatory cascades. In AMI rats, PTS treatment attenuated acute inflammation and reversed ventricular remodeling. These findings establish the mtDNA-STING axis in macrophages as a critical driver of post-AMI inflammation and identify pharmacological STING inhibition with PTS as a promising therapeutic strategy. The study bridges genetic validation with translational applications, highlighting macrophage STING as a novel target for ischemic heart disease management.
6.Value of albumin-bilirubin, easy albumin-bilirubin, and platelet-albumin-bilirubin scores in predicting the prognosis of patients with HCV-associated hepatocellular carcinoma
Huan MU ; Yingyuan ZHANG ; Danqing XU ; Yuanqiang HE ; Chunyan MOU ; Chunyun LIU ; Li LIU
Journal of Clinical Hepatology 2025;41(5):921-926
ObjectiveTo investigate the value of albumin-bilirubin (ALBI), easy albumin-bilirubin (EZ-ALBI), and platelet-albumin-bilirubin (PALBI) scores in predicting 2-year survival in patients with HCV-associated hepatocellular carcinoma (HCV-HCC). MethodsA retrospective analysis was performed for the clinical data of 174 patients with HCV-HCC who were admitted to The Third People’s Hospital of Kunming from January 2020 to January 2022, and the patients were followed up till 2 years after admission. According to the follow-up results, the patients were divided into survival group with 95 patients and death group with 79 patients. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups. Univariate and multivariate Cox proportional-hazards regression model analyses were used to investigate the influencing factors for the survival of HCV-HCC patients. The Kaplan-Meier method was used to plot survival curves and analyze the 2-year survival rate of HCV-HCC patients with different EZ-ALBI grades, and the log-rank test was used for comparison between groups. ResultsThere were significant differences between the survival group and the death group in platelet count, aspartate aminotransferase (AST), total bilirubin, albumin (Alb), alpha-fetoprotein (AFP), prealbumin, prothrombin time, international normalized ratio, PALBI score, ALBI score, EZ-ALBI score, Model for End-Stage Liver Disease (MELD) score, HCV genotype, peritoneal effusion, and vascular invasion (all P<0.05). The univariate Cox regression analysis showed that AST, Alb, AFP, ALBI score, EZ-ALBI score, PALBI score, MELD score, Barcelona Clinic Liver Cancer Staging, and peritoneal effusion were influencing factors for the survival of patients (all P<0.05), and the multivariate Cox regression analysis showed that EZ-ALBI score (hazard ratio [HR]=1.850, 95% confidence interval [CI]: 1.054 — 3.247, P=0.032) and peritoneal effusion (HR=1.993, 95%CI: 1.030 — 3.858, P=0.041) were independent risk factors for the survival of HCV-HCC patients. The survival curve analysis showed that the patients with EZ-ALBI grade 1/2/3 had a 2-year survival rate of 90.9%, 60.2%, and 32.2%, respectively, and there was a significant difference in cumulative survival rate between the patients with different EZ-ALBI grades (χ2=26.294, P<0.001). ConclusionEZ-ALBI score and the presence or absence of peritoneal effusion can be used as predictors of the survival of HCV-HCC patients.
7.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
8.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
9.Efficacy and safety of coblopasvir hydrochloride capsules/sofosbuvir tablets with or without ribavirin tablets in treatment of patients with chronic hepatitis C virus infection
Chunyan MOU ; Danqing XU ; Huan MU ; Jiangyan ZHANG ; Lixian CHANG ; Yuanqiang HE ; Yingyuan ZHANG ; Weikun LI ; Xiuling ZHANG ; Xiliang HE ; Qin PENG ; Li LIU
Journal of Clinical Hepatology 2025;41(9):1779-1787
ObjectiveTo investigate the therapeutic efficacy, influencing factors, and safety of a treatment regimen based on coblopasvir hydrochloride capsules/sofosbuvir tablets in patients with chronic hepatitis C virus (HCV) infection in a real-world setting. MethodsA total of 253 patients who attended The Third People’s Hospital of Kunming from September 1, 2021 to May 31, 2024 were enrolled, among whom there were 86 patients with compensated liver cirrhosis (CLC group) and 167 patients with chronic hepatitis C (CHC group). The patients were treated with coblopasvir hydrochloride capsules (60 mg)/sofosbuvir tablets (400 mg) with or without ribavirin tablets for 12 weeks, and they were followed up for 12 weeks after drug withdrawal. The primary outcome measures were the rate of sustained virologic response at week 12 after treatment (SVR12) and safety, and the secondary outcome measures were the changes in liver function, renal function, blood routine, and liver stiffness measurements (LSM) after 4 weeks of treatment, after 12 weeks of treatment, and at 12 weeks after drug withdrawal. The independent-samples t test and the Mann-Whitney U test were used for comparison of continuous data between two groups, and the Friedman test was used for comparison between multiple groups, while the Bonferroni method was used for paired comparison within each group; the chi-square test was used for comparison of categorical data between two groups. The Logistic analysis was used to investigate related influencing factors. ResultsThe 253 patients with chronic HCV infection had a mean age of 49.38±8.65 years, and there were 151 male patients (59.7%). Of all patients, 33.99% (86/253) had liver cirrhosis, 25.69% (65/253) had hypertension, 10.67% (27/253) had HIV infection, 8.70% (22/253) had diabetes, 3.95% (10/253) had liver cancer, 1.98% (5/253) had chronic hepatitis B, and 7.91% (20/253) were treatment-experienced patients. As for genotype distribution, 2.77% (7/253) had genotype 1, 12.65% (32/253) had genotype 2, 66.01% (167/253) had genotype 3, 16.60% (42/253) had genotype 6, and 1.98% (5/253) had unknown genotype. The patients had an overall SVR12 rate of 92.09%, with an SVR12 rate of 93.02% in the CLC group and 91.02% in the CHC group. The multivariate logistic regression analysis showed that age (odds ratio [OR]=1.086, 95% confidence interval [CI]: 1.007 — 1.170, P=0.032) and HCC (OR=9.178, 95%CI: 1.722 — 48.912, P=0.009) were independent influencing factors for sustained virologic response. Compared with baseline data, the CLC group had significant reductions in alanine aminotransferase (ALT) (χ2=107.103, P0.05), aspartate aminotransferase (AST) (χ2=90.602, P0.05), and LSM (χ2=42.235, P0.05) after 12 weeks of treatment, while the CHC group had significant reductions in total bilirubin (χ2=15.113, P0.05), ALT (χ2=202.237, P0.05), AST (χ2=161.193, P0.05), and LSM (χ2=37.606, P0.05). The incidence rate of serious adverse events was 1.58%, and none of the patients withdrew from drug therapy; the patients with such events were relieved after active symptomatic treatment. The incidence rate of all adverse events was 23.72%, among which fatigue (17.39%) and nausea (2.37%) were the most common adverse events, and these events often disappeared within 2 weeks or were gradually relieved after symptomatic treatment. ConclusionCoblopasvir hydrochloride capsules/sofosbuvir tablets with or without ribavirin tablets has good efficacy and safety in the treatment of chronic HCV infection.
10.Influencing factors for kinesiophobia among elderly patients with chronic obstructive pulmonary disease
HE Huan ; ZHAO Xue ; CAI Peng ; ZHAN Xiaoya ; MA Lei
Journal of Preventive Medicine 2025;37(7):659-663
Objective:
To investigate the influencing factors for kinesiophobia among elderly patients with chronic obstructive pulmonary disease (COPD), so as to provide the reference for alleviating kinesiophobia among COPD patients.
Methods:
From December 2023 to July 2024, COPD patients aged 60 years and above who sought medical treatment at a tertiary grade-a hospital in Guiyang City were selected. Demographic information was collected through questionnaire surveys. Kinesiophobia, exercise self-efficacy, social support, type D personality and coping styles were assessed using the Chinese version of Tampa Scale for Kinesiophobia, the Chinese version of the Self-Efficacy for Exercise Scale, Social Support Rating Scale, Type D Personality Scale and Chinese version of the Medical Coping Modes Questionnaire, respectively. Factors affecting kinesiophobia among elderly patients with COPD were analyzed using a multiple linear regression model.
Results:
A total of 300 COPD patients were surveyed, including 238 males (79.33%) and 62 females (20.67%). The majority of patients had a disease duration of less than 5 years, with 130 cases (43.33%). The average kinesiophobia score was (48.01±7.74) points. The average exercise self-efficacy score was (3.39±1.01) points. The average social support score was (34.42±6.76) points. There were 280 patients (93.33%) with type D personality. The average scores of the confrontation, avoidance, and resignation dimensions of coping styles were (17.42±5.00), (13.76±1.91), and (11.81±2.95) points, respectively. Multiple linear regression analysis showed that age (70-<80 years, β'=0.124; ≥80 years, β'=0.205), educational level (primary school and below, β'=0.228; junior high school, β'=0.182), household monthly income per capita (<3 000 yuan, β'=0.234; 3 000~<5 000 yuan, β'=0.165), social support (β'=0.294), type D personality (β'= 0.170), and coping styles (confrontation dimension, β'=-0.140; avoidance dimension, β'=0.154; resignation dimension, β'=0.175) statistically associated with kinesiophobia among elderly patients with COPD.
Conclusion
Kinesiophobia among elderly patients with COPD is associated with age, educational level, household monthly income per capita, social support, type D personality and coping styles.


Result Analysis
Print
Save
E-mail