1.Effects of Mitoxantrone liposomes on the proliferation,migration and stemness in ovarian cancer cells
Dong WANG ; Yue ZHANG ; Baiwang CHU ; Hua SUN
China Pharmacy 2026;37(1):42-48
OBJECTIVE To investigate the effects of Mitoxantrone liposomes (Lipo-MIT) on the proliferation, migration and cancer stem cell (CSCs) stemness of ovarian cancer cells, as well as to explore its mechanism of action based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. METHODS The effects of Lipo-MIT on cell proliferation, migration and the stemness characteristics of CSCs were investigated through in vitro experiments. A human ovarian cancer A2780 cells xenograft tumor model of nude mouse was established to explore the effects of Lipo-MIT at doses of 2 and 5 mg/kg on the safety of tumor-bearing mice, as well as in vivo tumor growth and the pathological characteristics of tumor tissues. The influence of Lipo-MIT on the expression levels of PI3K/AKT pathway-related proteins, epithelial-mesenchymal transition related proteins, and stemness related proteins in both cells and tumor tissues was also investigated. RESULTS The half maximal inhibitory concentrations of Lipo-MIT against A2780, SK-OV3, and OV-CAR5 cells were 0.72, 5.41, and 2.77 μmol/L, respectively. Compared with solvent control (0.1% dimethyl sulfoxide), 0.5-2.5 μmol/L Lipo-MIT significantly reduced the cell colony formation rate, shortened the cell migration distance, decreased the number of migrated cells, down-regulated the protein expression of N-cadherin, up-regulated the protein expression of E-cadherin (P<0.05), and also decreased the stem cell sphere formation frequency and down-regulated the protein expression of aldehyde dehydrogenase 1A1 (ALDH1A1) (P<0.05). Additionally, 1.0 and 2.5 μmol/L Lipo-MIT significantly reduced the stem cell sphere formation probability and down-regulated the protein expression of sex determining region Y box protein 2 in cells (P<0.05). In vivo experimental results demonstrated that 2, 5 mg/kg Lipo-MIT had no significant effects on the body weight, food intake, water intake, and organ (heart, liver, spleen, lung, and kidney) indices of tumor-bearing nude mice (P>0.05), but could significantly improve the pathological changes of tumor tissues and remarkably inhibit the protein expressions of N-cadherin, CD133 and ALDH1A1( only at 5 mg/kg Lipo-MIT), up-regulate the expression of E- cadherin (only at 5 mg/kg Lipo-MIT) in tumor tissues (P<0.05). Lipo-MIT at different concentrations/doses significantly reduced the phosphorylation levels of PI3K and AKT proteins in cells/tumor tissues (P<0.05). CONCLUSIONS Lipo-MIT can inhibit the proliferation and migration of ovarian cancer cells and the stemness by suppressing the activity of the PI3K/AKT pathway.
2.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
3.Gandouling Regulates PI3K/Akt/mTOR Autophagy Signaling Pathway via LncRNA H19 for Treatment of Wilson Disease Liver Fibrosis
Xin YIN ; Han WANG ; Daiping HUA ; Lanting SUN ; Yunyun XU ; Wenming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):131-138
ObjectiveTo investigate the potential mechanisms and pathways through which Gandouling (GDL) exerts its effects in the treatment of liver fibrosis in Wilson disease. MethodsSixty male SD rats were randomly divided into six groups: the normal group, the model group, the GDL low-, medium-, and high-dose groups (0.24, 0.48, 0.96 g·kg-1), and the penicillamine group (90 mg·kg-1), with 10 rats in each group. A copper-loaded Wilson disease rat model was established by gavage administration of 300 mg·kg-1 copper sulfate pentahydrate to all groups except the normal group. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathomorphological changes in the liver. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of hyaluronic acid (HA), laminin (LN), procollagen type-Ⅲ peptide (PC-Ⅲ), and collagen type-Ⅳ (C-Ⅳ). Transmission electron microscopy was used to examine the ultrastructure of liver tissues. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression levels of liver tissues and serum exosomal long noncoding RNA H19 (LncRNA H19), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Western blot analysis was performed to assess the expression levels of PI3K, Akt, mTOR, and their phosphorylated forms, as well as autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ/LC3-Ⅰ) in liver tissues. Beclin1 and LC3-Ⅱ fluorescence signal intensity was observed by immunofluorescence. ResultsCompared with the normal group, the model group exhibited inflammatory cell infiltration in hepatocytes, unclear nuclear boundaries with cell cleavage and necrosis, and collagen fiber deposition around confluent areas. The levels of HA, LN, PC-Ⅲ, and C-Ⅳ were significantly elevated (P<0.01). Transmission electron microscopy revealed an increased number of autophagic vesicles, with autophagic lysosomes exhibiting a single-layer membrane structure following degradation of most envelopes. Expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ were significantly increased (P<0.01), and fluorescence signals of Beclin1 and LC3-Ⅱ were markedly enhanced. The protein expression levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were reduced (P<0.01), while LncRNA H19 expression was increased (P<0.01), and mRNA expression levels of PI3K, Akt, and mTOR were decreased (P<0.01). After treatment with GDL, the degree of liver fibrosis was significantly improved, with decreased levels of HA, LN, PC-Ⅲ, and C-Ⅳ. The number of autophagic vesicles was significantly reduced, and expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ proteins were lower (P<0.01). The fluorescence signals of Beclin1 and LC3-Ⅱ weakened dose-dependently. The protein levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were elevated (P<0.01), while the expression level of LncRNA H19 was reduced (P<0.01). Furthermore, the mRNA expression levels of PI3K, Akt, and mTOR increased (P<0.05, P<0.01). ConclusionGDL may alleviate liver fibrosis and reduce liver injury by regulating the PI3K/Akt/mTOR autophagy signaling pathway via LncRNA H19.
4.Correlations Between Traditional Chinese Medicine Syndromes and Lipid Metabolism in 341 Children with Wilson Disease
Han WANG ; Wenming YANG ; Daiping HUA ; Lanting SUN ; Qiaoyu XUAN ; Wei DONG ; Xin YIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):140-146
ObjectiveTo study the correlations between traditional Chinese medicine (TCM) syndromes and lipid metabolism in children with Wilson disease (WD). MethodsClinical data and lipid metabolism indicators [total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein a (Lpa)] were retrospectively collected from 341 children with WD. The clinical data were compared among WD children with different syndromes, and the correlations between TCM syndromes and lipid metabolism in children with WD were analyzed. Least absolute shrinkage and selection operator (LASSO) regression was used for variable screening, and unordered multinomial Logistic regression was employed to analyze the effects of lipid metabolism indicators on TCM syndromes. ResultsThe 341 children with WD included 121 (35.5%) children with the dampness-heat accumulation syndrome, 103 (30.2%) children with the liver-kidney Yin deficiency syndrome, 68 children with the combined phlegm and stasis syndrome, 29 children with the spleen-kidney Yang deficiency syndrome, and 20 children with the liver qi stagnation syndrome. The liver-kidney Yin deficiency syndrome, combined phlegm and stasis syndrome, and spleen-kidney Yang deficiency syndrome had correlations with the levels of lipid metabolism indicators (P<0.05). Lipid metabolism abnormalities occurred in 232 (68.0%) children, including hypertriglyceridemia (108), hypercholesterolemia (23), mixed hyperlipidemia (67), lipoprotein a-hyperlipoproteinemia (12), and hypo-HDL-cholesterolemia (22). The percentages of hypertriglyceridemia and hypo-HDL-cholesterolemia varied among children with different TCM syndromes (P<0.05). Correlations existed for the liver-kidney Yin deficiency syndrome with TG, TC, and HDL-C, the combined phlegm and stasis syndrome with TG, the spleen-kidney Yang deficiency syndrome with TG, TC, and LDL-C, and the liver Qi stagnation syndrome with TC and LDL-C (P<0.05, P<0.01). ConclusionThe TCM syndromes of children with WD are dominated by the dampness-heat accumulation syndrome and the liver-kidney Yin deficiency syndrome, and dyslipidemia in the children with WD is dominated by hypertriglyceridemia and mixed hyperlipidemia. There are different correlations between TCM syndromes and lipid metabolism indicators, among which TG, TC, LDL-C, and HDL-C could assist in identifying TCM syndromes in children with WD.
5.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3
Ming-Chen ZHANG ; Hui ZHANG ; Ting-Ting LI ; Ming-Hua CHEN ; Xiao-Wen WANG ; Zhong-Guang SUN
Progress in Biochemistry and Biophysics 2025;52(7):1878-1889
ObjectiveThe aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM. MethodsA total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6. ResultsTwelve hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins. ConclusionA 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue.
6.Association Between Alterations in Oral Microbiota and Progression of Esophageal Carcinogenesis
Qin WEN ; Zhaolai HUA ; Jian SUN ; Xuhua MAO ; Jianming WANG
Cancer Research on Prevention and Treatment 2025;52(7):618-624
Objective To explore the association between oral microbiota and esophageal carcinogenesis. Methods A case-control study design was employed. A total of 309 subjects were recruited, consisting of 159 healthy controls, 32 cases of esophageal basal cell hyperplasia, 32 cases of low-grade intraepithelial neoplasia, 14 cases of high-grade intraepithelial neoplasia, and 72 cases of esophageal squamous cell carcinoma. Tongue swab samples were collected for 16S rRNA sequencing. The α-diversity and β-diversity of the microbiota were analyzed, and the characteristics of the microbial communities at different stages of esophageal carcinogenesis were compared. The strength of the association was expressed by odds ratio (OR) and 95% confidence interval (CI). Results α-diversity analysis indicated significant differences in the observed species number (Sobs) index across various stages of esophageal cancer progression (P<0.001). After adjusting for confounding factors such as age, gender, smoking, and alcohol consumption, the Simpson index was positively correlated with carcinogenesis (P=0.006). β-diversity analysis revealed differences in microbiota structure among the groups. After ordered multinomial logistic regression analysis and adjustment for multiple confounding factors, the relative abundance of Peptostreptococcus (OR: 2.06, 95%CI: 1.22–3.60), Patescibacteria (OR: 1.31, 95%CI: 1.04–1.67), Capnocytophaga (OR: 1.24, 95%CI: 1.05–1.54), and Bacteroidota (OR: 1.02, 95%CI: 1.00–1.05) was positively correlated with carcinogenesis. The relative abundance of Stomatobaculum (OR: 0.57, 95%CI: 0.30–1.00) and Actinobacteriota (OR: 0.95, 95%CI: 0.92–0.98) was negatively correlated with carcinogenesis. Conclusion Specific oral microbiotas are significantly associated with esophageal carcinogenesis, and synergistic or antagonistic interactions may be observed among the microbiota.
7.Threshold of kurtosis on occupational hearing loss associated with non-steady noise
Yang LI ; Haiying LIU ; Linjie WU ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Xin SUN ; Wei QIU ; Changyan YU ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):779-785
Background Kurtosis reflecting noise's temporal structure is an effective metric for evaluating noise-induced hearing loss (NIHL), and its threshold is still unclear. Objective To explore the energy range of kurtosis and the threshold of NIHL induced by kurtosis in this energy rangeMethods Using cross-sectional design,
8.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
9.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.

Result Analysis
Print
Save
E-mail