1.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
2.Analysis of Kidney Differential Metabolites and Hypoxia Adaptation Mechanism of Plateau Pikas Based on UHPLC-QE-MS
Yuxin HE ; Zhenzhong BAI ; Hua XUE ; Zixu GUO ; Xuefeng CAO
Laboratory Animal and Comparative Medicine 2025;45(1):3-12
Objective To explore the potential mechanisms of hypoxic adaptive metabolic changes in the kidneys of plateau pikas at different altitudes using non-targeted metabolomics analysis via ultra-high-performance liquid chromatography coupled with quadrupole electrostatic field orbital trap-mass spectrometry (UHPLC-QE-MS). Methods 10 plateau pikas were captured at an altitude of 4 360 m in Xingxiuhai area, Maduo County, Guoluo Tibetan Autonomous Prefecture, Qinghai Province (MD group), and 10 plateau pikas were captured at an altitude of 2 900 m in Menyuan area, Haibei Tibetan Autonomous Prefecture, Qinghai Province (MY group). After anesthesia, serum samples were collected, and kidney samples were collected after euthanasia. General physiological and biochemical indicators were measured and metabolomics analysis was performed. Part of the serum samples was used for hematology analysis, another part for blood gas analysis, and the remaining part for biochemical indicator detection. Metabolites were extracted from the kidney tissue samples and then analyzed using UHPLC-QE-MS. Differential metabolites were analyzed using metabolomics principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), with screening criteria set as variable importance in projection (VIP)>1.5 and fold change (FC)>1.5, or VIP>1.5 and FC<1/1.5. Correlation analysis heatmaps, significance analysis volcano plots, signaling pathway recognition bubble charts, and rectangular graphs were used for the analysis of differential metabolites and related signaling pathways. Results The red blood cell count, glucose, urea nitrogen, uric acid, and homocysteine levels in the MD group plateau pikas were higher than those in the MY group, while hemoglobin, hematocrit, creatinine, and carbon dioxide combining power were lower than those in the MY group. This indicated a significant difference in the blood oxygen-carrying capacity of plateau pikas at different altitudes. The principal component pattern recognition analyses, and OPLS-DA permutation test showed that the kidney metabolites of the MD and MY groups of plateau pikas had distinct clustering distributions (R²Y=0.930, Q²=0.655). According to the screening criteria and database comparison, 46 differential metabolites were identified in the kidneys of plateau pikas at different altitudes. In the MD group of plateau pikas, the expression levels of bufadienolide, adenosine, adenine, diosgenin, berberine chloride, carnosol, and astaxanthin were significantly increased (VIP>1.5, P<0.05), while the levels of arachidonic acid, histamine, and coumarin were significantly decreased (VIP>1.5, P<0.05). The analysis of related signaling pathways showed that the biosynthetic pathways of valine, leucine, and isoleucine had the largest impact factors (P<0.05), while the biosynthetic pathways of pantothenate and coenzyme A showed the most significant enrichment (P<0.05). Conclusion The differential metabolites of amino acids, pantothenate, and coenzyme A pathways in the kidneys of plateau pikas at different altitudes may be involved in the metabolic mechanisms of plateau pikas' hypoxia adaptation in high-altitude environments.
3.Changes in coordination of departments for major epidemic prevention and control in China before and after the outbreak of COVID-19: an analysis on official documents
Zhonghui HE ; Peiwu SHI ; Qunhong SHEN ; Zheng CHEN ; Chuan PU ; Lingzhong XU ; Zhi HU ; Anning MA ; Tianqiang XU ; Panshi WANG ; Hua WANG ; Qingyu ZHOU ; Chengyue LI ; Mo HAO
Shanghai Journal of Preventive Medicine 2025;37(5):446-450
ObjectiveTo analyze the changes in the degree of coordination of China's major epidemic prevention and control efforts before and after the outbreak of the Corona Virus Disease 2019 (COVID-19), so as to explore the impact of epidemic prevention and control measures on coordination dynamics. MethodsA total of 3 864 policy documents related to epidemic prevention and control from January 2000 to December 2020 across 31 provinces (autonomous regions, and municipalities) in China were systematically collected. Contents specific to collaborative and cooperative efforts were extracted, and the extent of interdepartmental coordination were quantified to assess the effectiveness of epidemic prevention and control efforts. Wilcoxon signed-rank test was adopted to statistically analyze the differences between the indicators before and after the epidemic. ResultsThe average overall coordination level for major epidemic prevention and control in 31 provinces (autonomous regions, and municipalities) increased from 43.06% to 97.62%, and the average coordination levels in the eastern, central, and western China soared from 42.29%, 37.50%, and 47.46%, to 98.81%, 96.20%, and 97.46%, respectively, with statistically significant differences (all P<0.05). In terms of department categorization, coordination levels in the professional departments and the key support departments peaked at 100.00%, while other support departments rose to 95.43%, with an increase of 77.15%, 181.85%, and 139.89%, respectively, exhibiting noteworthy statistically significant differences (all P<0.001). ConclusionThe scope of coordination departments of China’s major epidemic prevention and control exists a remarkable surge following the COVID-19 outbreak, notable heightened coordination is particularly observed among the key support departments. Future endeavors should prioritize the roles played by diverse departments in epidemic prevention and control, enhancing both the clarity of departmental responsibilities and the effectiveness of interdepartmental coordination.
4.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
5.Deoxynivalenol contamination in cereals and bakery products in Shanghai and dietary exposure assessment in pregnant women
Kailin LI ; Baozhang LUO ; Renjie QI ; Hua CAI ; Xia SONG ; Jingjin YANG ; Danping QIU ; Zhenni ZHU ; Yi HE ; Hong LIU
Journal of Environmental and Occupational Medicine 2025;42(10):1170-1176
Background Deoxynivalenol (DON), a priority contaminant for food safety risk monitoring, is produced by Fusarium spp. infesting crops, and its common derivatives are 3-acetyl-DON (3A-DON) and 15-acetyl-DON (15A-DON), which have been shown to possess gastrointestinal toxicity, immunotoxicity, reproductive toxicity, and cytotoxicity. Due to the stable physicochemical properties of the DON family of toxins (DONs), they cannot be effectively removed during food processing, thus following the food chain, entering the human body, and posing health risks. Objective To understand the contamination status of DONs in commercial foods (cereals and bakery products) in Shanghai in 2022–2023, and to assess the exposure risk of DONs in pregnant women by combining their dietary consumption data. Methods Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to determine the contamination level of DONs in 1 100 food samples (cereals and baked goods) collected in 2022 and 944 samples collected in 2023 from Shanghai. The dietary monitoring data of pregnant women in Shanghai from 2016 to 2017 were adopted. The monitoring employed the food frequency questionnaire distributed among pregnant women through a combination of online telephone enquiry and offline on-site face-to-face survey to estimate their food consumption levels. An exposure assessment model was established to calculate the exposure level to DONs, and the probability distribution of the DONs exposure level in the pregnant women group in Shanghai was obtained by applying @Risk 7.5 software and simulating the calculation according to the Monte Carlo principle. With reference to the tolerable daily intake (TDI) of DONs [1.00 µg·(kg·d)−1] proposed by the Joint FAO/WHO Expert Committee on Food Additives, the risk of exposure to DONs from commercial cereals and bakery products in pregnant women in Shanghai was assessed. Results DONs were detected in cereal and bakery samples collected in 2022 and 2023 with different levels of contamination. The level of DONs in cereal foods in 2023 (mean: 36.33 µg·kg−1) decreased compared to 2022 (mean: 23.64 µg·kg−1). However, the positive rate (71.67%) and level (mean: 51.22 µg·kg−1) of DONs in bakery products increased significantly compared with 2022 (positive rate: 10.00%, mean: 24.39 µg·kg−1). The mean consumption of cereals in 783 pregnant women was 222.48 g·d−1 and the mean consumption of bakery products was 36.07 g·d−1, and there was no statistically significant difference in the intake of all types of cereals and bakery products across the early, middle, and late stages of pregnancy. The modelled intakes of DONs via commercial cereals and bakery products for pregnant women in Shanghai were calculated to be 0.20 and 0.57 µg·(kg·d)−1 in 2022 for the mean level and the 95th percentile level, respectively, and 0.16 µg·(kg·d)−1 and 0.35 µg·(kg·d)−1 in 2023, respectively. The results of the health risk assessment showed that pregnant women in Shanghai had 2.6% and 1.4% probability of exposure to DONs from cereal consumption in 2022 and 2023, respectively. Conclusion The risk of exposure of pregnant women in Shanghai to DONs via commercial cereals and bakery products is relatively low (1.4%-2.6%). However, considering the physical sensitivity of pregnant women, they should avoid consuming moldy grains and appropriately reduce intake of bakery products.
6.Pharmacoeconomic evaluation of fluticasone furoate/umeclidinium/vilanterol powder for inhalation for the treatment of chronic obstructive pulmonary disease
Xueru DING ; Huimin LIU ; Xiaodong HE ; Hua LI ; Zhihao LI
Chinese Journal of Pharmacoepidemiology 2024;33(7):721-730
Objective To evaluate the economic value of fluticasone furoate/umeclidinium/vilanterol(FF/UMEC/VI)powder for inhalation in the treatment of symptomatic chronic obstructive pulmonary disease patients with acute exacerbation risk from the perspective of the Chinese health system.Methods Based on subgroup analysis of the China cohort in the IMPACT trial,a four-state lifetime Markov model was established with a 3-month cycle.The model simulation period was 11 years.Clinical efficacy,health benefits,and cost data were obtained through published literature.The health outcomes included quality adjusted life year(QALY).Using 3 times Chinas per capita gross domestic product(GDP)in 2023 as the willingness-to-pay threshold,the cost-utility analysis method was used for analysis the economic viability of FF/UMEC/VI.The scenario analysis,one-way sensitivity analysis and probability sensitivity analysis were used to verify the robustness of the results.Results Compared with fluticasone furoate/vilanterol(FF/VI),FF/UMEC/VI in the treatment of symptomatic chronic obstructive pulmonary disease patients with acute exacerbation risk saved costs 8 118.66 yuan and obtained an additional 0.000 06 QALYs,giving it an economic advantage.Compared with umeclidinium/vilanterol(UMEC/VI),FF/UMEC/VI treatment paid 2 784.41 yuan more and received 0.000 45 QALYs less,making UMEC/VI more cost-utility.The scenario analysis results further confirmed the robustness of the model.The sensitivity analysis results showed that when the drug cost of FF/UMEC/VI per cycle decreases to 637.29 yuan,FF/UMEC/VI had economic benefits under a willingness-to-pay threshold of 3 times China's per capita GDP in 2023.Conclusion For patients with symptomatic chronic obstructive pulmonary disease at risk of acute exacerbation,FF/UMEC/VI is more cost-utility than FF/VI.Compared with UMEC/VI,FF/UMEC/VI has economic viability after price reducing.
7.Mortality, morbidity, and care practices for 1750 very low birth weight infants, 2016-2021
Yang HE ; Meng ZHANG ; Jun TANG ; Wanxiu LIU ; Yong HU ; Jing SHI ; Hua WANG ; Tao XIONG ; Li ZHANG ; Junjie YING ; Dezhi MU
Chinese Medical Journal 2024;137(20):2452-2460
Background::Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. The study aimed to analyze the clinical characteristics of VLBW infants.Methods::A retrospective cohort study was conducted in West China Second Hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with those of previous 7 years (2009-2015).Results::Of the total 1750 VLBW, 1386 were infants born with birth weight between 1000-1499 g and 364 infants were born with weight below 1000 g; 42.9% (751/1750) required delivery room resuscitation; 53.9% (943/1750) received non-invasive ventilation only; 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), and 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The proportions of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the proportions of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015.Conclusion::Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.
8.Study on anti-myocardial ischemia active components and mechanism of Xinkeshu tablets based on network pharmacology and zebrafish model
Lin-Hua HOU ; Hua-Zheng ZHANG ; Shuo GAO ; Yun ZHANG ; Qiu-Xia HE ; Ke-Chun LIU ; Chen SUN ; Jian-Heng LI ; Qing XIA
Chinese Pharmacological Bulletin 2024;40(5):964-974
Aim To study the active ingredients and mechanism of action of Xinkeshu tablets against myo-cardial ischemia by network pharmacology and ze-brafish model.Methods The anti-myocardial ische-mia activity of Xinkeshu tablets was evaluated by iso-prenaline hydrochloride(ISO)-induced zebrafish myo-cardial ischemia model and H2O2-induced H9c2 dam-age model.The active ingredients of Xinkeshu tablets were retrieved using databases such as TCMSP.The potential targets were predicted by PharmaMapper data-base.Myocardial ischemic disease targets were searched by OMIM database.The potential therapeutic targets of Xinkeshu tablets against myocardial ischemia were analyzed.GO and KEGG enrichment analysis were conducted on core targets.The active ingredients were verified by zebrafish and cell model.qRT-PCR was used to detect the expression of key targets.Re-sults Xinkeshu tablets could significantly alleviate ISO-induced pericardial edema and bradycardia.It al-so could increase sinus venous-bulb aortic(SV-BA)distance and improve the cell viability.The 30 poten-tial active ingredients of Xinkeshu tables mainly acted on 30 core targets,including ALB,AKT1 and MAPK1,to regulate 627 GO items,including protein phosphorylation,negative regulation of apoptosis and positive regulation of PI3K signal transduction.KEGG results showed that 117 signaling pathways,including PI3K/Akt,FOXO and Ras,exerted anti-myocardial ischemia effect.Salvianolic acid A,lithospermic acid,rosmarinic acid,salvianolic acid D,salvianolic acid B,ginsenoside Rg2,hyperoside,3'-methoxypuerarin,3'-hydroxypuerarin and ginsenoside Rg1 could alleviate ISO-induced zebrafish myocardial ischemia and im-prove the cell viability.Xinkeshu tablets could upregu-late the expression of genes such as ras and akt1,and downregulate the expression of genes such as mapk1 and mapk8.Conclusion The active ingredients,in-cluding salvianolic acid A in Xinkeshu tablets,exert anti-myocardial ischemia effects by targeting targets,such as AKT1,MAPK1,and regulating signaling path-ways,such as PI3K/Akt,MAPK and Ras.
9.Modulation of lipopolysaccharide-induced depressive-like behaviors and learning memory in mice by berbamine
Ang HE ; Qing-Jie CHEN ; Cui-Ping HUANG ; Ning-Hua WU
Chinese Pharmacological Bulletin 2024;40(6):1042-1048
Aim To investigate the effects of ber-bamine on behavioral changes in LPS-induced chronic neuroinflammation model mice and the related mecha-nisms.Methods By injecting lipopolysaccharide in-traperitoneally for seven days in a row,berbamine was given intraperitoneally as a treatment;the behavioral studies of mice in each group were identified;Nissen staining was used to observe the changes in the patho-logical morphology of the mouse hippocampus and the expression levels of inflammation-related proteins.These procedures established a mouse neuroinflamma-tion model.Results The number of neurons in the model group's hippocampal CA1 and CA3 regions was significantly smaller than that in the control group.In the water maze experiment,as the number of training days grew,the model group's escape latency increased and its retention time in the target quadrant dropped.The immobilization period of the model group mice in-creased during the forced swimming exercise.Serum levels of inflammatory factors such as IL-1β,IL-6,and TNF-α levels were also higher.The hippocampus tis-sue of the mice in the model group had higher levels of NLRP3,ASC,caspase-1,IL-18,ROCK1,ROCK2 ex-pression,and RHOA.When compared to the model group,the administration of berbamine was a therapy intervention.In the meantime,with the number of training days increased,the target quadrant lag time increased and the escape latency gradually decreased.Additionally,the model group's mice spent less time resting during forced swimming,and the serum inflam-matory factors TNF-α,IL-1β,and IL-6 decreased in mouse hippocampal tissues.Lastly,the expression lev-els of NLRP3,caspase-1,ASC,IL-1β,ROCK1,ROCK2,and RHOA all decreased in mouse hippocam-pal tissue.Conclusions The mechanism of action of berbamine,which improves lipopolysaccharide-induced depressive-like behaviors and modifies learning memory in mice,may include the NLRP3 and RHOA/ROCK signaling pathways.
10.Study on the machanism of Huannao Yicong Deoction targeting HAMP to regulate iron metabolism and improve cognitive impairment in AD model mice
Ning-Ning SUN ; Xiao-Ping HE ; Shan LIU ; Yan ZHAO ; Jian-Min ZHONG ; Ya-Xuan HAO ; Ye-Hua ZHANG ; Xian-Hui DONG
Chinese Pharmacological Bulletin 2024;40(7):1240-1248
Aim To explore the effects of Huannao Yicong decoction(HYD)on the learning and memory ability and brain iron metabolism in APP/PS1 mice and the correlation of HAMP knockout mice and APP/PS1 double transgenic model mice.Methods The ex-periment was divided into five groups,namely,HAMP-/-group(6-month HAMP gene knockout mice),APP/PS1 group(6-month APP/PS1-double-transgenic mice),HAMP-/-+HYD,APP/PS1+HYD,and negative control group(6-month C57BL/6J mice),with six mice in each group.The dose was ad-ministered(13.68 g·kg-1 weight),and the other groups received distilled water for gavage once a day for two months.After the administration of the drug,the mice in each group were tested for learning and memory in the Morris water maze;Biochemical detec-tion was performed to detect iron ion content in each mouse brain;Western blot and RT-qPCR were carried out to analyze hippocampal transferrin(TF),transfer-rin receptor1(TFR1),membrane iron transporter1(FPN1)divalent metal ion transporter 1(DMT1)and β-amyloid protein(Aβ)protein and mRNA expression levels in each group.Results Compared with the normal group,both HAMP-/-mice and APP/PS1 mice had reduced the learning and memory capacity,in-creased iron content in brain tissue,Aβ protein ex-pression increased in hippocampus of HAMP-/-group and APP/PS1 group mice(P<0.01),the protein and mRNA expression of TF,TFR1 and DMT1 increased in hippocampal tissues of HAMP-/-and APP/PS1 groups(P<0.01),and the FPN1 protein and mRNA expres-sion decreased(P<0.01).Compared with the HAMP-and APP/PS1 groups,respectively,HAMP-/-+HYD group and APP/PS1+HYD group had improved learning and memory ability,decreased iron content,decreased Aβ protein expression(P<0.01),decreased TF,TFR1,DMT1 protein and mR-NA expression(P<0.01),and increased expression of FPN1 protein and mRNA(P<0.01).Conclusions There is some association between HAMP-/-mice and APP/PS1 mice,HYD can improve the learning and memory ability of HAMP-/-and APP/PS1 mice and reduce the Aβ deposition.The mechanism may be related to the regulation of TF,TFR1,DMT1,FPN1 expression and improving brain iron overload.


Result Analysis
Print
Save
E-mail