1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
4.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
5.Internal tension relieving technique assisted anterior cruciate ligament reconstruction to promote ligamentization of Achilles tendon grafts in small ear pigs in southern Yunnan province
Bohan XIONG ; Guoliang WANG ; Yang YU ; Wenqiang XUE ; Hong YU ; Jinrui LIU ; Zhaohui RUAN ; Yajuan LI ; Haolong LIU ; Kaiyan DONG ; Dan LONG ; Zhao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(4):713-720
BACKGROUND:We have successfully established an animal model of small ear pig in southern Yunnan province with internal tension relieving technique combined with autologous Achilles tendon for anterior cruciate ligament reconstruction,and verified the stability and reliability of the model.However,whether internal tension relieving technique can promote the ligamentalization process of autologous Achilles tendon graft has not been studied. OBJECTIVE:To investigate the differences in the process of ligamentalization between conventional reconstruction and internal reduction reconstruction of the anterior cruciate ligament by gross view,histology and electron microscopy. METHODS:Thirty adult female small ear pigs in southern Yunnan province were selected.Anterior cruciate ligament reconstruction was performed on the left knee joint with the ipsilateral knee Achilles tendon(n=30 in the normal group),and anterior cruciate ligament reconstruction was performed on the right knee joint with the ipsilateral knee Achilles tendon combined with the internal relaxation and enhancement system(n=30 in the relaxation group).The autogenous right forelimb was used as the control group;the anterior cruciate ligament was exposed but not severed or surgically treated.At 12,24,and 48 weeks after surgery,10 animals were sacrificed,respectively.The left and right knee joint specimens were taken for gross morphological observation to evaluate the graft morphology.MAS score was used to evaluate the excellent and good rate of the ligament at each time point.Hematoxylin-eosin staining was used to evaluate the degree of ligament graft vascularization.Collagen fibers and nuclear morphology were observed,and nuclear morphology was scored.Ultrastructural remodeling was evaluated by scanning electron microscopy and transmission electron microscopy. RESULTS AND CONCLUSION:(1)The ligament healing shape of the relaxation group was better at various time points after surgery,and the excellent and good rate of MAS score was higher(P<0.05).Moreover,the relaxation group could obtain higher ligament vascularization score(P<0.05).(2)The arrangement of collagen bundles and fiber bundles in the two groups gradually tended to be orderly,and the transverse fiber connections between collagen gradually increased and thickened,suggesting that the strength and shape degree of the grafts were gradually improved,but the ligament remodeling in the relaxation group was always faster than that in the normal group at various time points after surgery.(3)The diameter,distribution density,and arrangement degree of collagen fibers in the relaxation group were better than those in the normal group at all time points,especially in the comparison of collagen fiber diameter between and within the relaxation group(P<0.05).
6.Mechanism of Feibi prescription on mitochondrial apoptosis of alveolar epithelial cells in mice with pulmonary fibrosis
Xue CHENG ; Huanxi JING ; Yunke ZHANG ; Hong FANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2334-2339
BACKGROUND:Studies have shown that mitochondrial apoptosis of alveolar epithelial cells plays an important role in the pathogenesis of pulmonary fibrosis,and Feibi prescription can attenuate pulmonary fibrosis and inhibit the transformation of extracellular mechanisms in mice with pulmonary fibrosis. OBJECTIVE:To investigate the mechanism of Feibi prescription on mitochondrial apoptpsis of alveolar epithelial cells in bleomycin induced pulmonary fibrosis mice. METHODS:Forty male C57BL/6 mice were randomly divided into blank control group,model group,pirfenidone group,and Feibi prescription group.There were 10 mice in each group.Except for the blank control group,the other three groups were intraperitoneally injected with bleomycin(7.5 mg/kg per day)for 10 continuous days to establish the model of pulmonary fibrosis.On day 1 after modeling,the mice in corresponding drug groups were intragastrically administered with pirfenidone(51.43 mg/kg per day)or Feibi prescription(12.86 mg/kg per day).Drug administration lasted for 28 days.Then,morphological changes of lung tissue in mice were observed by hematoxylin-eosin staining and Masson staining.The levels of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the serum were detected by ELISA,and the expression of Bax,Bcl-2,Beclin-1,and Caspase3 in the lung tissue was detected by western blot assay. RESULTS AND CONCLUSION:Morphological observation of lung tissue showed that in the model group,the alveolar septum and alveolar lumen were infiltrated with a large number of inflammatory cells,and there were large clusters of fibrous foci;in the pirfenidone group,alveolar septa were thickened,with a small infiltration of inflammatory cells and the appearance of pulmonary fibrous foci;in the Feibi prescription group,the alveolar structure was widened,with a small amount of inflammatory cell infiltration,and the alveolar structure was almost not obviously damaged,with a small number of lung fibrous foci.Compared with the blank control group,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 were significantly higher in the model group(P<0.01),while the levels were significantly lower in the two drug groups than the model group(P<0.01).Moreover,the mass concentrations of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 in the Feibi prescription group were lower than those in the pirfenidone group.Compared with the blank control group,the expression of Bax and Caspase3 proteins in the lung tissue of mice was significantly higher in the model group,while the expression of Bax and Caspase3 proteins was significantly lower in the two drug groups than the model group.Compared with the blank control group,the expression of Bcl-2 and Beclin-1 proteins in the lung tissue of mice was significantly lower in the model group,while the expression of Bcl-2 and Beclin-1 proteins was significantly higher in the two drug groups than the model group.To conclude,Feibi prescription can reduce pulmonary fibrosis and its mechanism may be related to the downregulation of interleukin-1,interleukin-6,interleukin-17,and interleukin-37 levels.This prescription can also reduce the apoptosis of alveolar epithelial cells by regulating mitochondrial apoptosis-related proteins,Bax,Bcl-2,Beclin-1 and Caspase3.
7.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
8.Effects of Saccharomyces cerevisiae chassis cells with different squalene content on triterpenoid synthesis.
Feng ZHANG ; Kang-Xin HOU ; Yue ZHANG ; Hong-Ping HOU ; Yue ZHANG ; Chao-Yue LIU ; Xue-Mi HAO ; Jia LIU ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2025;50(8):2130-2136
Many triterpenoid compounds have been successfully heterologously synthesized in Saccharomyces cerevisiae. To increase the yield of triterpenoids, various metabolic engineering strategies have been developed. One commonly applied strategy is to enhance the supply of precursors, which has been widely used by researchers. Squalene, as a precursor to triterpenoid biosynthesis, plays a crucial role in the synthesis of these compounds. This study primarily investigates the effect of different squalene levels in chassis strains on the synthesis of triterpenoids(oleanolic acid and ursolic acid), and the underlying mechanisms are further explored using real-time quantitative PCR(qPCR) analysis. The results demonstrate that the chassis strain CB-9-5, which produces high levels of squalene, inhibits the synthesis of oleanolic acid and ursolic acid. In contrast, chassis strains with moderate to low squalene production, such as Y8-1 and CNPK, are more conducive to the synthesis of oleanolic acid and ursolic acid. The qPCR analysis reveals that the expression levels of ERG1, βAS, and CrCYP716A154 in the oleanolic acid-producing strain CB-OA are significantly lower than those in the control strains C-OA and Y-OA, suggesting that high squalene production in the chassis strains suppresses the transcription of certain genes, leading to a reduced yield of triterpenoids. Our findings indicate that when constructing S. cerevisiae strains for triterpenoid production, chassis strains with high squalene content may suppress the expression of certain genes, ultimately lowering their production, whereas chassis strains with moderate squalene levels are more favorable for triterpenoid biosynthesis.
Squalene/analysis*
;
Saccharomyces cerevisiae/genetics*
;
Triterpenes/metabolism*
;
Metabolic Engineering
;
Oleanolic Acid/biosynthesis*
;
Ursolic Acid
9.Construction of core outcome set for clinical research on traditional Chinese medicine treatment of simple obesity.
Tong-Tong WU ; Yan YU ; Qian HUANG ; Xue-Yin CHEN ; Fu-Ming-Xiang LIU ; Li-Hong YANG ; Chang-Cai XIE ; Shao-Nan LIU ; Yu CHEN ; Xin-Feng GUO
China Journal of Chinese Materia Medica 2025;50(12):3423-3430
Following the core outcome set standards for development(COS-STAD), this study aims to construct core outcome set(COS) for clinical research on traditional Chinese medicine(TCM) treatment of simple obesity. Firstly, a comprehensive review was conducted on the randomized controlled trial(RCT) and systematic review(SR) about TCM treatment of simple obesity that were published in Chinese and English databases to collect reported outcomes. Additional outcomes were obtained through semi-structured interviews with patients and open-ended questionnaire surveys for clinicians. All the collected outcomes were then merged and organized as an initial outcome pool, and then a preliminary list of outcomes was formed after discussion by the working group. Subsequently, two rounds of Delphi surveys were conducted with clinicians, methodology experts, and patients to score the importance of outcomes in the list. Finally, a consensus meeting was held to establish the COS for clinical research on TCM treatment of simple obesity. A total of 221 RCTs and 12 SRs were included, and after integration of supplementary outcomes, an initial outcome pool of 141 outcomes were formed. Following discussions in the steering advisory group meeting, a preliminary list of 33 outcomes was finalized, encompassing 9 domains. Through two rounds of Delphi surveys and a consensus meeting, the final COS for clinical research on TCM treatment of simple obesity was determined to include 8 outcomes: TCM symptom scores, body mass index(BMI), waist-hip ratio, waist circumference, visceral fat index, body fat rate, quality of life, and safety, which were classified into 4 domains: TCM-related outcomes, anthropometric measurements, quality of life, and safety. This study has preliminarily established a COS for clinical research on TCM treatment of simple obesity. It helps reduce the heterogeneity in the selection and reporting of outcomes in similar clinical studies, thereby improving the comparability of research results and the feasibility of meta-analysis and providing higher-level evidence support for clinical practice.
Humans
;
Obesity/therapy*
;
Medicine, Chinese Traditional
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
;
Drugs, Chinese Herbal/therapeutic use*
10.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail