1.MASLD development: From molecular pathogenesis toward therapeutic strategies.
Zhu YANG ; Jiahui ZHAO ; Kexin XIE ; Chengwei TANG ; Can GAN ; Jinhang GAO
Chinese Medical Journal 2025;138(15):1807-1824
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver injuries, including steatosis to steatohepatitis (MASH), liver fibrosis, cirrhosis, and relevant complications. The liver mainly comprises hepatocytes, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), immune cells (T cells, B cells), and hepatic stellate cells (HSCs). Crosstalk among these different liver cells, endogenous aberrant glycolipid metabolism, and altered gut dysbiosis are involved in the pathophysiology of MASLD. This review systematically examines advances in understanding the molecular pathogenesis of MASLD, with a focus on emerging therapeutic targets and translational clinical trials. We first delineate the crucial regulatory mechanisms involving diverse liver cells and the gut-liver axis in MASLD development. These cell-specific pathogenic insights offer valuable perspectives for advancing precision medicine approaches in MASLD treatment. Furthermore, we evaluate potential therapeutic targets and summarize clinical trials currently underway. By comprehensively updating the MASLD pathophysiology and identifying promising strategies, this review aims to facilitate the development of novel pharmacotherapies for this increasingly prevalent condition.
Humans
;
Fatty Liver/therapy*
;
Animals
;
Liver/pathology*
;
Kupffer Cells/metabolism*
;
Hepatocytes/metabolism*
;
Hepatic Stellate Cells/metabolism*
2.Expression and Function of miR-144 in β-Thalassemia.
Lan YANG ; Ling LING ; Fan YANG ; Lei YANG ; Zhi-Chen DAI ; Duo-Nan YU
Journal of Experimental Hematology 2025;33(2):491-497
OBJECTIVE:
To explore the expression and function of microRNA-144 (miR-144) in β-thalassemia (β-thal).
METHODS:
The expression of miR-144 during the differentiation of murine erythroleukemia (MEL) cells and mouse embryonic liver-derived erythroid precursor cells was analyzed by real-time fluorescence quantitative PCR (qRT-PCR); The expression levels of miR-144 in peripheral blood and day-14.5 embryonic hepatocytes of wild-type (WT) and β-thal mice, as well as the expression levels of miR-144 in peripheral blood of β-thal patients, was also measured by qRT-PCR. The proportion of Ter119 and CD71 double positive cells in peripheral blood of mild and severe β-thal mice was analyzed by flow cytometry, and the expression levels of miR-144 in the peripheral blood of mild and severe β-thal mice and patients were compared; Bone marrow nucleated erythrocytes from WT mice and β-thal mice were sorted and the expression levels of miR-144 potential target genes were analyzed by gene chip.
RESULTS:
The expression levels of miR-144 were gradually increased during the directed differentiation of mouse MEL cells and embryonic hepatocytes to the erythroid lineage (r MEL=0.97, r embryonic hepatocytes=0.86); Compared with WT mice, the expression levels of miR-144 in peripheral blood and 14.5-day embryonic hepatocytes of β-thal mice were significantly increased (P < 0.05); Compared with healthy controls, the patients with β-thal showed an increased expression levels of miR-144 in peripheral blood (P < 0.05). Compared with mice and humans with mild β-thal, the expression levels of miR-144 in peripheral blood of those with severe β-thal were significantly increased (P < 0.05). The expressions of potential target genes of miR-144 in nucleated erythroid cells of the β-thal mice were significantly reduced compared to the WT group.
CONCLUSION
The expression level of miR-144 gradually increases in erythroid development, and compared with mild β-thal patients, the expression level of miR-144 in the peripheral blood is higher in severe β-thal patients. MiR-144 is expected to be an auxiliary diagnostic indicator for β-thal in clinical practice.
MicroRNAs/metabolism*
;
beta-Thalassemia/genetics*
;
Animals
;
Mice
;
Humans
;
Cell Differentiation
;
Hepatocytes
3.Kazinol B alleviates hypoxia/reoxygenation-induced hepatocyte injury by inhibiting the JNK signaling pathway.
Yi ZHU ; Junhui LI ; Min YANG ; Pengpeng ZHANG ; Cai LI ; Hong LIU
Journal of Central South University(Medical Sciences) 2025;50(2):181-189
OBJECTIVES:
Hypoxia/reoxygenation (H/R) injury is a critical pathological process during liver transplantation. Kazinol B has known anti-inflammatory, anti-apoptotic, and metabolic regulatory properties, but its protective mechanism in H/R-induced liver injury remains unclear. This study aims to investigate the protective effects and underlying mechanisms of Kazinol B in H/R-induced hepatocyte injury.
METHODS:
An ischemia-reperfusion model was established in healthy adult male Sprague-Dawley rats, and an in vitro H/R model was created using cultured hepatocytes. Hepatocytes were treated with Kazinol B (0-100 μmol/L) to assess cytotoxicity and protective effects. Cell viability was evaluated using the cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays. Expression of apoptosis-related proteins, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), and cleaved caspase-3, was detected by Western blotting. Reactive oxygen species (ROS) levels were assessed via fluorescence probes, and inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured using enzyme-linked immunosorbent assay (ELISA). TdT-mediated nick end labeling (TUNEL) staining was performed to assess DNA damage and apoptosis.
RESULTS:
Kazinol B had no significant effect on hepatocyte viability at 0-50 μmol/L, but showed cytotoxicity at 100 μmol/L (P<0.05). At 0.1-20 μmol/L, Kazinol B significantly improved cell survival, reduced LDH release, decreased apoptosis, and attenuated DNA damage (all P<0.001). At 10 μmol/L, Kazinol B markedly down-regulated Bad and cleaved caspase-3 (both P<0.05), and up-regulated Bcl-2 (P<0.01). It also dose-dependently reduced ROS levels and inflammatory cytokines TNF-α and IL-1β (all P<0.01). Both in vitro and in vivo, Kazinol B inhibited activation of the c-Jun N-terminal kinase (JNK) pathway without affecting extracellular regulated protein kinase (ERK) signaling (P>0.05). TUNEL staining showed that the protective effect of Kazinol B against apoptosis was partially reversed by the JNK agonist anisomycin (P<0.01).
CONCLUSIONS
Kazinol B mitigates hepatocyte injury induced by H/R by inhibiting the JNK signaling pathway. Its protective effect is associated with suppression of oxidative stress and inflammation, indicating its potential as a hepatoprotective agent.
Animals
;
Hepatocytes/pathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Reperfusion Injury/prevention & control*
;
Apoptosis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Cell Survival/drug effects*
;
Cell Hypoxia
;
Cells, Cultured
4.Endomitosis: a new cell fate in the cell cycle leading to polyploidy in megakaryocytes and hepatocytes.
Qi-Hua HUA ; Xuechun ZHANG ; Ruifeng TIAN ; Zhigang SHE ; Zan HUANG
Journal of Zhejiang University. Science. B 2025;26(9):843-862
Megakaryocytes and hepatocytes are unique cells in mammals that undergo polyploidization through endomitosis in terminal differentiation. Many polyploidization regulators and underlying mechanisms have been reported, most of which are tightly coupled with development, organogenesis, and cell differentiation. However, the nature of endomitosis, which involves successful entry into and exit from mitosis without complete cytokinesis, has not yet been fully elucidated. We highlight that endomitosis is a new cell fate in the cell cycle, and tetraploidy is a critical stage at the bifurcation of cell fate decision. This review summarizes the recent research progress in this area and provides novel insights into how cells manipulate mitosis toward endomitosis. Endomitotic cells can evade the tetraploidy restrictions and proceed to multiple rounds of the cell cycle. This knowledge not only deepens our understanding of endomitosis as a fundamental biological process but also offers new perspectives on the physiological and pathophysiological implications of polyploidization.
Hepatocytes/physiology*
;
Megakaryocytes/physiology*
;
Humans
;
Polyploidy
;
Animals
;
Cell Cycle/physiology*
;
Cell Differentiation
;
Mitosis/physiology*
5.NLRP6 overexpression improves nonalcoholic fatty liver disease by promoting lipid oxidation and decomposition in hepatocytes through the AMPK/CPT1A/PGC1A pathway.
Qing SHI ; Suye RAN ; Lingyu SONG ; Hong YANG ; Wenjuan WANG ; Hanlin LIU ; Qi LIU
Journal of Southern Medical University 2025;45(1):118-125
OBJECTIVES:
To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).
METHODS:
Mouse models with high-fat diet (HFD) feeding for 16 weeks (n=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (n=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.
RESULTS:
HFD and MCD feeding both resulted in the development of NAFLD in mice, which showed significantly decreased NLRP6 expression in the liver. In PA-treated LO2 cells, NLRP6 overexpression significantly decreased cellular TG content and lipid deposition, while NLRP6 knockdown caused the opposite effects. NLRP6 overexpression in PA-treated LO2 cells also increased mRNA and protein expressions of PGC1A and CPT1A, levels of ATP and β-hydroxybutyrate, and the phosphorylation level of AMPK pathway; the oxidative decomposition of lipids induced by Ad-NLRP6 was inhibited by the use of AMPK inhibitors.
CONCLUSIONS
NLRP6 overexpression promotes lipid oxidation and decomposition through AMPK/CPT1A/PGC1A to alleviate lipid deposition in hepatocytes.
Non-alcoholic Fatty Liver Disease/metabolism*
;
Animals
;
Hepatocytes/metabolism*
;
Lipid Metabolism
;
Mice
;
Humans
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
AMP-Activated Protein Kinases/metabolism*
;
Carnitine O-Palmitoyltransferase/metabolism*
;
Diet, High-Fat
;
Male
;
Mice, Inbred C57BL
;
Signal Transduction
6.Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification.
Linluo ZHANG ; Changqing LI ; Lingling HUANG ; Xueping ZHOU ; Yuanyuan LOU
Journal of Southern Medical University 2025;45(4):810-818
OBJECTIVES:
To investigate the protective effect of catalpol against triptolide-induced liver injury and explore its mechanism to test the Fuzheng Zhidu theory for detoxification.
METHODS:
C57BL/6J mice were randomized into blank control group, catalpol group, triptolide group and triptolide+catalpol group. After 13 days of treatment with the agents by gavage, the mice were examined for liver tissue pathology, liver function, hepatocyte subcellular structure, lipid peroxidation, ferrous ion deposition and expressions of ferroptosis-related proteins in the liver. In a liver cell line HL7702, the effect of catalpol or the ferroptosis inhibitor Fer-1 on triptolide-induced cytotoxicity was tested by examining cell functions, Fe2+ concentration, lipid peroxidation, ROS level and the ferroptosis-related proteins.
RESULTS:
In C57BL/6J mice, catalpol significantly alleviated triptolide-induced hepatic injury, lowered the levels of ALT, AST and LDH, and reversed the elevation of Fe2+ concentration and MDA level and the reduction of GPX level. In HL7702 cells, inhibition of ferroptosis by Fer-1 significantly reversed triptolide-induced elevation of ALT, AST and LDH levels. Western blotting and qRT-PCR demonstrated that catalpol reversed abnormalities in expressions of SLC7A11, FTH1 and GPX4 at both the mRNA and protein levels in triptolide-treated HL7702 cells.
CONCLUSIONS
The combined use of catalpol can reduce the hepatotoxicity of triptolide in mice by inhibiting excessive hepatocyte ferroptosis through the SLC7A11/GPX4 pathway.
Animals
;
Phenanthrenes/toxicity*
;
Ferroptosis/drug effects*
;
Diterpenes/toxicity*
;
Epoxy Compounds/toxicity*
;
Mice, Inbred C57BL
;
Hepatocytes/metabolism*
;
Mice
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Iridoid Glucosides/pharmacology*
;
Liver/metabolism*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Male
;
Amino Acid Transport System y+/metabolism*
7.Gandou Fumu Decoction improves liver steatosis by inhibiting hepatocyte ferroptosis in mice with Wilson's disease through the GPX4/ACSL4/ALOX15 signaling pathway.
Mengying ZHANG ; Chenling ZHAO ; Liwei TIAN ; Guofang YU ; Wenming YANG ; Ting DONG
Journal of Southern Medical University 2025;45(7):1471-1478
OBJECTIVES:
To explore the mechanism of Gandou Fumu Decoction (GDFMD) for improving Wilson's disease (WD) in tx-J mice.
METHODS:
With 6 syngeneic wild-type mice as the control group, 30 tx-J mice were randomized into WD model group, low-, medium- and high-dose GDFMD treatment groups, and Fer-1 treatment group. Saline (in control and model groups) and GDFMD (3.48, 6.96 or 13.92 g/kg) were administered by gavage, and Fer-1 was injected intraperitoneally once daily for 14 days. Oil red and HE staining were used to observe lipid deposition and pathological conditions in the liver tissue; ALT, AST, albumin, AKP levels were determined to assess liver function of the mice. Western blotting and RT-qPCR were used to detect hepatic protein and mRNA expressions of GPX4, ACSL4, ALOX15, FTH1, FLT, TFR1, FAS, SCD1, and ACOX1, and Fe2+, MDA, ROS, SOD, GSH and 4-HNE levels were analyzed to assess oxidative stress.
RESULTS:
The mouse models of WD showed obvious fatty degeneration in the liver tissue significantly increased serum levels of ALT, AST and AKP, decreased albumin level, increased Fe2+, MDA, ROS, 4-HNE levels, decreased SOD and GSH levels (P<0.05), lowered protein expressions of ACOX1, GPX4, FTH1, FLT, FAS, and SCD1, and increased protein contents of TFR1, ACSL4 and ALOX15 in the liver. Treatment with GDFMD and Fer-1 improved liver histopathology and liver function of the mouse models, decreased the levels of Fe2+, MDA and ROS, increased SOD and GSH levels, and reversed the changes in hepatic protein expressions.
CONCLUSIONS
GDFMD improves liver steatosis in mouse models of WD possibly by inhibiting hepatocyte ferroptosis through the GPX4/ACSL4/ALOX15 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Mice
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hepatolenticular Degeneration/drug therapy*
;
Hepatocytes/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Fatty Liver/metabolism*
;
Arachidonate 15-Lipoxygenase/metabolism*
;
Coenzyme A Ligases/metabolism*
;
Liver/metabolism*
;
Male
8.NLRP3 signaling pathway promotes hepatocyte pyroptosis in mice with nonalcoholic steatohepatitis in hypoxic environment.
Shanyu LUO ; Qiang ZHU ; Yufei YAN ; Zonghong JI ; Huajie ZOU ; Ruixia ZHANG ; Yinggui BA
Journal of Southern Medical University 2025;45(9):2026-2033
OBJECTIVES:
To investigate the regulatory role of the NLRP3 signaling pathway in hepatocyte pyroptosis in nonalcoholic steatohepatitis (NASH) under hypoxia.
METHODS:
Twenty-four male C57BL/6 mice were randomized equally into hypoxic control (A), hypoxic NASH model (B), hypoxic NASH+NLRP3 inhibitor (C), and hypoxic NASH+caspase-1 inhibitor (D) groups. In groups B-D, the mice were fed a methionine choline-deficient (MCD) diet under hypoxic conditions (to simulate a 5000 m altitude) for 6 weeks; the mice in groups C and D received intraperitoneal injections of the respective inhibitors every other day.
RESULTS:
Compared with those in group A, the mice in group B showed significantly elevated serum levels of FBG, TC, TG, ALT and AST, increased liver lipid content, inflammatory cell infiltration and collagen fiber deposition, and enhanced hepatic expressions of NLRP3, caspase-1, IL-1β and GSDMD proteins, with obvious swelling, cristae breakage, vacuolization, and outer membrane disruption of the mitochondria, ribosome loss in the cytoplasm, destruction of the nuclear membrane, and pathological changes of the rough endoplasmic reticulum. Treatment with NLRP3 inhibitor and caspase-1 inhibitor both significantly lowered serum levels of TC, TG, ALT and AST (but without significantly affecting FBG) in the mouse models, and reduced liver lipid content, inflammatory cell infiltration, collagen deposition, and expression levels of NLRP3, caspase-1, GSDMD and IL-1β. The treatments also significantly improved pathological changes in the mitochondria, ribosomes and endoplasmic reticulum in liver tissues of the mice.
CONCLUSIONS
NLRP3 signaling pathway plays a key role in promoting hepatocyte pyroptosis in NASH mice under hypoxic condition, and inhibiting this pathway can effectively reduce liver inflammation, suggesting its potential as a therapeutic target for NASH treatment.
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Mice, Inbred C57BL
;
Male
;
Hepatocytes/pathology*
;
Signal Transduction
;
Mice
;
Hypoxia/metabolism*
;
Caspase 1/metabolism*
;
Interleukin-1beta/metabolism*
;
Liver/metabolism*
9.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*
10.Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury.
Bo TAO ; Xiangli ZHAO ; Zhengyi SHI ; Jie LI ; Yulin DUAN ; Xiaosheng TAN ; Gang CHEN ; Changxing QI ; Yonghui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1104-1110
Hepatic ischemia/reperfusion injury (IRI) remains a critical complication contributing to graft dysfunction following liver surgery. As part of an ongoing search for hepatoprotective natural products, five previously unreported homoadamantane-type polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperhomanoons A-E (1-5), and one known analog, hypersampsone O (6), were isolated from Hypericum patulum. Among these, compound 6 demonstrated potent protective effects against CoCl₂-induced hypoxic injury in hepatocytes. Furthermore, in a murine model of hepatic IRI induced by vascular occlusion, pretreatment with 6 markedly alleviated liver damage and reduced hepatocyte apoptosis. This study is the first to identify PPAPs as promising scaffolds for the development of therapeutic agents targeting hepatic IRI, underscoring their potential as lead compounds in drug discovery efforts for ischemic liver diseases.
Reperfusion Injury/prevention & control*
;
Animals
;
Hypericum/chemistry*
;
Phloroglucinol/administration & dosage*
;
Mice
;
Humans
;
Male
;
Liver/blood supply*
;
Apoptosis/drug effects*
;
Molecular Structure
;
Protective Agents/pharmacology*
;
Hepatocytes/drug effects*
;
Mice, Inbred C57BL
;
Liver Diseases/drug therapy*

Result Analysis
Print
Save
E-mail