1.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
3.Effect of interferon induced transmembrane protein 1 ( IFITM1 ) upregulation to cytokine release syndrome in CAR-T-treated B-cell acute lymphoblastic leukemia.
Mengyi DU ; Yinqiang ZHANG ; Chenggong LI ; Fen ZHOU ; Wenjing LUO ; Lu TANG ; Jianghua WU ; Huiwen JIANG ; Qiuzhe WEI ; Cong LU ; Haiming KOU ; Yu HU ; Heng MEI
Chinese Medical Journal 2025;138(10):1242-1244
4.Cervical spondylosis: innovative understanding from traditional Chinese medicine and treatment by classic formulas.
Heng CHEN ; Cong-Yang XUE ; Shuang CHEN ; Zi-Ting CHEN ; Tian TANG ; Xin LIU ; Zhi-Peng XI ; Ran KANG ; Lin XIE
China Journal of Chinese Materia Medica 2025;50(9):2596-2604
As one of the chronic diseases with high incidence in contemporary society, cervical spondylosis has increasing patient groups who gradually present a low age, and it seriously affects social and public health. Although modern medicine has made great progress in the pathological research and clinical treatment of cervical spondylosis, patients still face gastrointestinal side effects of nonsteroidal anti-inflammatory drugs(NSAIDs), neck pain, limited mobility, upper limb numbness, and other symptoms after conservative or surgical treatment. In the theory of traditional Chinese medicine(TCM), cervical spondylosis belongs to the categories of "Bi syndrome" "stiff neck" "stiff Bi", etc. With the change of the times, the change of lifestyle, and the application of western medicine treatment, the etiology and pathogenesis of TCM in cervical spondylosis also show new characteristics. In terms of etiology and pathogenesis, it involves the invasion of wind, cold, and dampness, long-term strain, liver and kidney deficiency, Qi and blood stasis, which are associated with factors such as cervical degeneration, muscle tension and spasm, intervertebral disc herniation, and nerve root compression in modern medicine. In terms of the evolution of pathogenesis, in the early stage, wind, cold, and dampness, were more common in Xuanfu, resulting in unfavorable muscles and bones, poor flow of Qi and blood, and cervical spondylosis and radiculopathy. Medium-term phlegm stasis and internal knots, sluggish muscles and veins, and long-term weathering and fire are more likely to occur in the vertebral artery and sympathetic radiculopathy. In the later stage, the positive Qi is depleted; the true Yin is damaged, and the viscera Qi and blood are deficient, which is most common in cervical myelopathy. The strategy of treating cervical spondylosis with TCM classic formulas applies Gegen Decoction, Wutou Decoction, Qianghuo Shengshi Decoction, Mahuang Jiazhu Decoction to patients with wind, cold, and dampness. Patients with phlegm dampness and blood stasis are treated with Huoxue Xiaoling Dan, Jinlingzi Powder, Siwu Decoction, Banxia Baizhu Tianma Decoction, Shuanghe Decoction, etc. For those patients with liver, spleen, and kidney deficiency, Huangqi Guizhi Wuwu Decoction, Tianma Gouteng Decoction, Guishao Dihuang Pills, Shenling Baizhu Powder, and Lizhong Decoction are used to invigorate the spleen, nourish Qi and blood, and tonify liver and kidney. In clinical practice, the authors advocate a safe and effective treatment plan of classic formulas based on deficiency and excess, the integration of formulas and syndromes, and the combination of modern research results, so as to relieve symptoms, reduce recurrence, and reduce medical burden.
Humans
;
Spondylosis/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Cervical Vertebrae/pathology*
5.Comparison of the early and medium term efficacy of oblique lateral interbody fusion combined lateral fixation and transforaminal lumbar interbody fusion in lumbar spinal stenosis.
Ren-Jie LI ; Wei-Min JIANG ; Tang-Yi-Heng CHEN ; Sen YANG ; Yi-Jie LIU
China Journal of Orthopaedics and Traumatology 2025;38(5):465-472
OBJECTIVE:
To compare the clinical efficacy of oblique lateral interbody fusion(OLIF) combined with lateral fixation and transforaminal lumbar interbody fusion(TLIF) in patients with lumbar spinal stenosis.
METHODS:
Totally 47 patients with lumbar stenosis from November 2018 to December 2021 were analyzed retrospectively and were divided into two groups according to the surgical methods. Among them, 21 cases underwent oblique lumbar interbody fusion supplemental anterolateral screw and rod instrumentation, including 5 males and 16 females, with a mean age of (68.19±6.13) years old ranging 55 to 74 years; the other 26 cases underwent posterior pedicle screw fixation and reduction were recorded, including 8 males and 18 females with a mean age of (65.35±7.64) years old ranging 54 to 78 years. Visual analogue scale(VAS) of pain was recorded to evaluate the degree of low back pain and lower extremity pain. The radiographic parameters were collected to evaluate the efficacy of two approaches including disc height, foraminal height, canal sagittal diameter and cross-sectional area.
RESULTS:
All operations were completed successfully. The wound healed normally and bone fusion was obtained in the last final follow up. No serious complication was occurred in both groups. One case of dural tear occurred in direct compression group. Four cases of left thigh weakness and pain were recorded in indirect decompression group. The average postoperative follow-up was(21.69±4.37)months in direct compression group, while(20.43±4.80)months in another group. There were no significant difference in bone density, body mass index(BMI), hospital stay, Cobb angel(P>0.05). The differences in intra-operative blood loss, operation time, disc height, foraminal height between two groups were statistically significant(P<0.05). The area and sagittal diameter of the spinal canal in the two groups were significantly improved after surgery(P<0.05).
CONCLUSION
Both two fusion methods have achieved good clinical results in the treatment of lumbar spinal stenosis, with the advantages of good stability, fast recovery and high fusion rate. Compared with TLIF, the advantage of OLIF has greater advantages in less bleeding and less trauma.
Humans
;
Male
;
Female
;
Spinal Stenosis/surgery*
;
Spinal Fusion/methods*
;
Aged
;
Middle Aged
;
Lumbar Vertebrae/surgery*
;
Retrospective Studies
;
Treatment Outcome
6.Comparison of application and efficacy of domestic HURWA and imported Smith & Nephew Cori robots in total knee arthroplasty.
Ming-You WANG ; Zhuo-Dong TANG ; Yu-Ping LAN ; Heng XIAO ; Ming-Li WANG ; Xun-Zhou SONG ; Hong-Ping WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1027-1036
OBJECTIVE:
Investigation on the clinical application of HURWA robot and Smith & Nephew Cori robot in total knee arthroplasty(TKA).
METHODS:
A retrospective analysis was performed on 84 patients with knee osteoarthritis who underwent robotic-assisted TKA (RATKA) between June 2023 and March 2025. According to the different robotic systems used, the patients were divided into the domestic HUARUN robotic-assisted total knee arthroplasty group (HRATKA group) and the Smith & Nephew Cori robotic-assisted total knee arthroplasty group (CRATKA group). There were 42 patients in the HRATKA group, including 16 males and 26 females; the age ranged from 56 to 73 years old, with an average of (64.70±8.30) years old;the body mass index (BMI) was (25.10±2.30) kg·m-2;21 cases were on the right side and 21 cases on the left side;in terms of Kellgren-Lawrence(K-L) classification, there were 15 cases of Grade Ⅲ and 27 cases of Grade Ⅳ;the disease duration ranged from 3 to 25 years, with an average of (15.5±7.5) years. The CRATKA group also included 42 patients, with 14 males and 28 females;the age ranged from 58 to 74 years old, with an average of (65.60±7.50) years old;the BMI was (24.50±2.70) kg·m-2; 20 cases were on the right side and 22 cases on the left side;regarding K-L classification, there were 11 cases of Grade Ⅲ and 31 cases of Grade Ⅳ;the disease duration ranged from 2 to 26 years, with an average of (16.5±8.8) years. Collect general data of all patients, including age, gender, height, weight, surgical site, K-L classification, incision length, and operation time. To evaluate prosthesis position, compare the frontal tibia component (FTC) angle, lateral femoral component (LFC) angle, lateral tibia component (LTC) angle, and frontal femoral component angle between the two groups of patients after surgery. Measure the deviation of the hip-knee-ankle (HKA) angle to assess lower limb alignment. Additionally, compare the following indicators between the two groups:Knee Society Score (KSS), Visual Analogue Scale (VAS) for pain, knee range of motion (ROM), hemoglobin (HB) level, hematocrit (HCT) level, complication rate, and in-hospital satisfaction.
RESULTS:
All patients successfully completed the surgery as scheduled, and all were followed up after the operation. The follow-up period ranged from 5 to 17 months with an average of (11.2±6.1) months. There were 4 cases of venous thrombosis in the HRATKA group and 3 cases in the CRATKA group;each group had 2 cases of wound exudation. No mechanical-related complications, pulmonary embolism, or other severe complications occurred. Comparison of the incision length and hospital stay between the HRATKA group and the CRATKA group showed no statistically significant difference (P>0.05). The operation time in the HRATKA group was (96.80±7.10) minutes, which was longer than that in the CRATKA group (90.10±8.80) minutes, and the difference was statistically significant (P<0.05). In the HRATKA group, the HKA angle was (178.93±1.11) degree, the FFC angle was (89.00±0.91)°, and the LFC angle was (7.31±2.17) degree;the corresponding values in the CRATKA group were (178.05±1.34)°, (87.88±1.74)°, and (10.60±2.84) degree respectively. The differences in these three indicators between the two groups were all statistically significant (P<0.05). However, there were no statistically significant differences in the FTC angle or LTC angle between the two groups (P>0.05). There was also no statistically significant difference in the total perioperative blood loss between the two groups (P>0.05). At 3 days after surgery, the VAS score for movement in the HRATKA group (5.95±1.45) points was higher than that in the CRATKA group (4.50±0.97) points, with a statistically significant difference (P<0.05);at 90 days after surgery, there was no statistically significant difference in the movement VAS score between the two groups (P>0.05). Additionally, no statistically significant differences were observed between the two groups in the KSS, ROM at 3 and 90 days after surgery, or satisfaction degree during hospitalization (all P>0.05).
CONCLUSION
The domestic HURWA robot demonstrates excellent performance in osteotomy efficiency and lower limb alignment recovery. The Smith & Nephew Cori robot has a significant advantage in soft tissue assessment and joint stability optimization. Both robotic systems offer high-quality surgical treatments that significantly improve short-term knee function.
Humans
;
Male
;
Female
;
Arthroplasty, Replacement, Knee/instrumentation*
;
Aged
;
Middle Aged
;
Retrospective Studies
;
Robotic Surgical Procedures/methods*
;
Osteoarthritis, Knee/surgery*
7.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
8.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
9.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
10.Huanglian-Renshen-Decoction Maintains Islet β-Cell Identity in T2DM Mice through Regulating GLP-1 and GLP-1R in Both Islet and Intestine.
Wen-Bin WU ; Fan GAO ; Yue-Heng TANG ; Hong-Zhan WANG ; Hui DONG ; Fu-Er LU ; Fen YUAN
Chinese journal of integrative medicine 2025;31(1):39-48
OBJECTIVE:
To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine.
METHODS:
The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water). The entire treatment of mice lasted for 6 weeks. Blood insulin, glucose, and GLP-1 levels were quantified using enzyme-linked immunosorbent assay kits. The proliferation and apoptosis factors of islet cells were determined by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Then, GLP-1, GLP-1R, prohormone convertase 1/3 (PC1/3), PC2, v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA), and pancreatic and duodenal homeobox 1 (PDX1) were detected by Western blot, IHC, IF, and real-time quantitative polymerase chain reaction, respectively.
RESULTS:
HRD reduced the weight and blood glucose of the db/db mice, and improved insulin sensitivity at the same time (P<0.05 or P<0.01). HRD also promoted mice to secrete more insulin and less glucagon (P<0.05 or P<0.01). Moreover, it also increased the number of islet β cell and decreased islet α cell mass (P<0.01). After HRD treatment, the levels of GLP-1, GLP-1R, PC1/3, PC2, MafA, and PDX1 in the pancreas and intestine significantly increased (P<0.05 or P<0.01).
CONCLUSION
HRD can maintain the normal function and identity of islet β cell, and the underlying mechanism is related to promoting the paracrine and endocrine activation of GLP-1 in pancreas and intestine.
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Glucagon-Like Peptide-1 Receptor/metabolism*
;
Insulin-Secreting Cells/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Blood Glucose/metabolism*
;
Insulin/blood*
;
Mice
;
Intestinal Mucosa/pathology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Islets of Langerhans/pathology*

Result Analysis
Print
Save
E-mail