1.Progress on the mechanism and application of hyperbaric oxygen therapy for neurodegenerative diseases.
Fang-Fang WANG ; Nan WANG ; Heng-Rong YUAN ; Ji XU ; Jun MA ; Xiao-Chen BAO ; Yi-Qun FANG
Acta Physiologica Sinica 2025;77(2):318-326
In 2040, neurodegenerative diseases (NDD) will overtake cancer as the second leading cause of death after cardiovascular and cerebrovascular diseases. Therefore, the search for effective intervention measures has become the top priority to deal with this difficult burden. Hyperbaric oxygen therapy (HBOT) has been used for the past 50 years to treat conditions such as decompression sickness, carbon monoxide poisoning and radiation damage. In recent years, studies have confirmed that HBOT has good effects in improving cognitive impairment after brain injury and stroke, and alleviating neurodegeneration and dysfunction related to NDD. Here we reviewed the pathogenesis and treatment state of NDD, introduced the application of HBOT in animal models and clinical studies of NDD, and expounded the application potential of HBOT in the treatment of NDD from the perspective of mitochondrial function, neuroinflammation, neurogenesis and angiogenesis, oxidative stress, apoptosis, microcirculation and epigenetics.
Hyperbaric Oxygenation
;
Humans
;
Neurodegenerative Diseases/physiopathology*
;
Animals
;
Oxidative Stress
;
Apoptosis
;
Mitochondria/physiology*
;
Neurogenesis
;
Epigenesis, Genetic
2.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
3.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
4.Characterization and features of dampness-heat obstruction syndrome in rats with knee osteoarthritis based on "disease-syndrome-symptom" combination research strategy.
Li-Li WANG ; Teng-Teng XU ; Xiao-Xiao WANG ; Qun LI ; Li-Ting XU ; Wei-Heng CHEN ; Chun-Fang LIU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(7):1861-1871
A combination of the "disease-syndrome-symptom" approach was used to study the syndrome characterization and features of dampness-heat obstruction syndrome in papain-induced knee osteoarthritis(KOA) model rats during the disease process. Forty-eight male SD rats were randomly divided into sham and model groups. The KOA model was established by injecting a mixture of papain and L-cysteine into the joint cavity on days 1, 3, and 5. During the 8 weeks following model establishment, the rats were assessed weekly for the plantar mechanical pain threshold, knee joint diameter, local skin temperature of the knee joint, weight-bearing difference between the two hind feet, and the modified Lequesne MG score of the knee joint. Samples were collected at 1, 2, 4, 6, and 8 weeks after model establishment to observe the gross lesions in cartilage and synovium. Histopathological changes in joint tissues were examined using hematoxylin-eosin, Masson's trichrome, and Senna red O-solid green staining. ELISA and immunohistochemical analysis were performed to detect the levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, prostaglandin E2(PGE2), and the expression of aquaporins(AQP) 1 and 3 in serum and synovium. The results showed that the ink score of articular cartilage in the model group significantly increased from 4 to 8 weeks, the cartilage Mankin's score and the percentage of Masson-positive area in cartilage increased significantly from 1 to 8 weeks. The percentage of red-stained area for cartilage proteoglycans decreased significantly from 1 to 8 weeks. The synovitis score from 1 to 6 weeks and the percentage of blue-stained collagen fibers in the synovium from 1 to 8 weeks increased significantly, with statistically significant differences compared to the sham group. The mechanical pain threshold in the model group significantly decreased from 1 to 8 weeks, the knee joint diameter significantly increased from 1 to 6 weeks, and the local skin temperature of the knee joint, the weight-bearing difference between the two hind feet, and the modified Lequesne MG score from 1 to 5 weeks significantly increased, all with statistically significant differences compared to the sham group. The levels of IL-1β, IL-6, TNF-α, and PGE2 in serum and synovium of the model group significantly increased from 1 to 6 weeks. Serum TNF-α and PGE2, and synovial IL-1β, also significantly increased at 8 weeks. The levels of cartilage AQP1 and AQP3 significantly increased from 1 to 4 weeks, while synovial AQP1 and AQP3 increased significantly from 1 to 6 weeks, with all differences statistically significant compared to the sham group. In conclusion, papain-induced KOA rats exhibited pathological changes, including articular cartilage degeneration and synovial inflammation, within 1 week of induction. The KOA rats showed characteristics of dampness-heat obstruction syndrome, such as joint pain, swelling, elevated skin temperature, and decreased function, as well as increased inflammatory factors and AQP1、AQP3 in serum and joint tissues within 5 to 6 weeks of disease onset. These results provide an experimental model for studying the syndromes of KOA with dampness-heat obstruction syndrome.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Osteoarthritis, Knee/physiopathology*
;
Disease Models, Animal
;
Humans
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Knee Joint/pathology*
5.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
6.Road traffic mortality in Zunyi city, China: A 10 - year data analysis (2013-2022).
Tian-Jing SUN ; Xiao-Fei HUANG ; Fang-Ke XIE ; Ji ZHANG ; Xu-Heng JIANG ; An-Yong YU
Chinese Journal of Traumatology 2025;28(2):145-150
PURPOSE:
The study aimed to examine the pattern of motorization and the mortality rate related to road traffic crashes in Zunyi (a city in northern Guizhou province of China) from 2013 to 2022, and to identify the epidemiological characteristics of these crashes with to provide insights that could help improve road safety.
METHODS:
Data were obtained from the Zunyi traffic management data platform, and the mortality rates were calculated. We deployed various analytical methods, including descriptive analysis, Chi-square test or Fisher's exact test for categorical variables, circular distribution map analysis, and Rayleigh test to characterize the traits of road traffic crashes in the region.
RESULTS:
During the 10-year study period, 7488 people died due to road traffic accidents, with males accounting for 70.4% and females 29.6% (χ2 = 101.97, p < 0.001). The mortality rate increased from 7.80 deaths per 100,000 people in 2013 to 10.70 deaths per 100,000 people in 2016, but then decreased to 9.54 deaths per 100,000 people in 2019. A notable finding was that the death rate per 10,000 vehicles declined from 16.09 deaths per 10,000 vehicles in 2013 to 5.48 deaths per 10,000 vehicles in 2022. The study also found that vulnerable road users represented nearly half (48.76%) of all accident fatalities, and unlicensed or inexperienced driving contributed significantly to the occurrence of road traffic accidents.
CONCLUSION
Although the number of road traffic accidents in Zunyi has decreased, there are still some critical issues that need to be addressed, particularly for vulnerable road users and unlicensed drivers. Our results highlight the need for targeted interventions to address the specific risk factors of road traffic crashes, particularly those affecting vulnerable road users and drivers without sufficient experience or license.
Humans
;
Accidents, Traffic/statistics & numerical data*
;
China/epidemiology*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Aged
;
Adolescent
;
Young Adult
;
Child
7.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
8.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
9.The prospect of the application of human body visualization metaverse in the field of surgery
Chihua FANG ; Xiwen WU ; Ann Pheng HENG
Chinese Journal of Surgery 2024;62(11):981-983
As 2021 is known as the “first year of the metaverse”, the concept of metaverse is promoting a multi-field innovation revolution on a global scale. The new experiences and technologies it brings are expected to provide solutions for the difficulties in the field of human visualization surgery in disease diagnosis, preoperative planning, surgical treatment, medical education, health management and patient experience. This opens up opportunities for the next wave of disruptive technology innovation. This paper proposes a new concept of “human visualization metaverse”, and summarizes its innovative application, future development direction and challenges to promote the research and development of human visualization metaverse,and to explore the application potential of metaverse technology in the field of surgery to advance the research and development of the metaverse for human visualization.
10.Establishment and Validation of Risk Nomogram for Individualized Prediction of Acute Kidney Injury in Patients with Sepsis
Heng ZHAO ; Yu CHEN ; Fang FENG
Journal of Medical Research 2024;53(9):69-73
Objective To establish and verify a nomogram model for early prediction of acute kidney injury(AKI)in patients with sepsis.Methods A total of 162 patients with sepsis admitted to the Second Hospital of Lanzhou University from January 2020 to Decem-ber 2021 were selected as the modeling group,A total of 93 patients with sepsis admitted from January 2022 to December 2022 were se-lected as the verification group.The patients in the modeling group were divided into the sepsis with AKI group(n=52)and sepsis with-out AKI group(n=110).Logistic regression analysis was used to screen the risk factors affecting the occurrence of AKI in patients with sepsis in the modeling group;R software was used to construct a nomogram model for predicting the occurrence of AKI in patients with sepsis.Results Mechanical ventilation,hospitalization time of intensive care unit(ICU),procalcitonin(PCT)level,interleukin-6(IL-6)level,and tumor necrosis factor-α(TNF-α)level,and blood lactate level showed statistically significant differences in sepsis with AKI and sepsis without AKI(P<0.05).Multivariate Logistic regression analysis showed that mechanical ventilation,hospitalization time of ICU≥3days,and high PCT level,and high blood lactate level were independent risk factors for the occurrence of AKI in patients with sepsis(P<0.05).Based on the risk factors,a nomogram model was established with R software,and the area under the receiver operating characteristic(ROC)curve was 0.830 in the modeling group,and 0.845 in the validation group.According to the results of the nomogram model,the calibration curves were in general agreement between the predicted values and actual values.The results of the Hos-mer-Lemeshow goodness-of-fit test showed that for the modelling group x2=7.340,P=0.501,and for the validation group x2=7.758,P=0.458.Conclusion The construction of a risk nomogram model for predicting the occurrence of AKI in patients with sepsis in the ICU is of great clinical value,and can be used in the clinic to guide individualised treatment.

Result Analysis
Print
Save
E-mail