1.The value and application prospects of heat shock protein 70 in tumor immunotherapy.
Fugang ZHANG ; Li JIANG ; Deqiang WANG ; Ablimit MAMATNIYAZ ; Kang SUN
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1034-1040
Heat shock protein 70 (HSP70), an evolutionarily conserved molecular chaperone, serves as a central regulator within tumor immune networks. This review summarizes the multiple immune regulatory mechanisms mediated by HSP70 through its specific domains: promoting antigen presentation and cross-presentation processes; prolonging immune response duration; regulating innate and adaptive immune responses; and interacting with immune checkpoint molecules like programmed death-1 ligand 1 (PD-L1). In translation of clinical research, HSP70 can serve as a vaccine adjuvant to enhance immunogenicity, while its inhibitors can overcome resistance to immunotherapy. Additionally, membrane-bound HSP70 represents a potential immunotherapeutic target, and its targeting strategies show significant synergistic effects when combined with immune checkpoint inhibitors. However, due to the functional redundancy of the molecular chaperone network, the clinical efficacy of single-agent HSP70 inhibition is limited. In-depth elucidation of HSP70's synergistic regulatory mechanisms within the chaperone interaction network has important implications for developing novel tumor immunotherapy strategies.
HSP70 Heat-Shock Proteins/metabolism*
;
Humans
;
Immunotherapy/methods*
;
Neoplasms/immunology*
;
Animals
;
B7-H1 Antigen/metabolism*
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.Research progress on the protective effects of heat acclimation on the cardiova-scular system and its molecular mechanisms.
Guo-Yu LI ; Feng GUO ; Zhuo WANG ; Yue HUANG
Acta Physiologica Sinica 2025;77(5):820-838
Heat acclimation provides cardiovascular protection in high-temperature environments through multilevel mechanisms; however, the complete molecular basis of its effects remains unclear. In this paper, we systematically review the effects of heat acclimation on blood volume, vascular function, cardiac structure, energy metabolism, and anti-stress regulation, revealing their potential mechanisms in cardiovascular adaptive protection. We also summarizes the multilevel responses induced by heat stress and heat acclimation, including the modulatory effects of heat acclimation on heat shock proteins (HSPs), hypoxia inducible factor 1 (HIF-1), and apoptotic pathways. Additionally, we highlights the comprehensive protective effects of heat acclimation across various stressors (e.g., hypoxia, heat stress). This review provides a significant physiological basis for cardiovascular disease management and sports medicine, emphasizing the potential application of heat acclimation in response to multiple stressors and supporting its role as an effective tool in cardiovascular health management and stress protection interventions.
Humans
;
Acclimatization/physiology*
;
Hot Temperature
;
Heat-Shock Proteins/metabolism*
;
Animals
;
Heat-Shock Response/physiology*
;
Hypoxia-Inducible Factor 1/metabolism*
;
Apoptosis/physiology*
4.A rapid method for detecting prfA and hly toxin genes of Listeria monocytogenes using double nucleic acid colloidal gold strips.
Yan LIU ; Jianyu YANG ; Yujiao ZHOU ; Wenbo DING ; Xianyu ZHANG ; Linran GAO ; Beizhen PAN ; Jifei YANG ; Yundong ZHAO
Journal of Southern Medical University 2025;45(2):387-394
OBJECTIVES:
To detect prfA and hly toxin genes of Listeria monocytogenes using polymerase chain reaction (PCR) and colloidal gold technology.
METHODS:
L. monocytogenes DNA was extracted by boiling method. With prfA and hly of L. monocytogenes as the target genes, the 5' ends of upstream and downstream primers of prfA gene were labeled with 6-FAM and biotin, and the 5' ends of upstream and downstream primers of hly gene were labeled with digoxin and biotin, respectively, to establish the toxin gene detection method. Using cloning transformation, sequencing analysis, cloning of positive control products, the detection kid was developed and its specificity, sensitivity, reproducibility and stability were tested, followed by verification with sample testing.
RESULTS:
The concentration of L. monocytogenes DNA extracted by boiling method was 148.81±0.97 ng/μL, and the A260/A280 ratio ranged from 1.8 to 2.0. The PCR products showed a 100% homology with the gene sequences in GenBank database after cloning, transformation and sequencing. The colloidal gold strip yielded positive results only for L. monocytogenes samples without cross-reactions with Staphylococcus aureus, Escherichia coli or Bacillus cereus, and its minimum detection limit was 10-2 ng/μL, demonstrating a 10-fold greater sensitivity of the test than agarose gel electrophoresis. The test also showed good reproducibility of the results when performed by different operators with good stability of the test strips after storage for 6 to 12 months. The test results showed that this kit could accurately and quickly detect L.monocytogenes in the test samples.
CONCLUSIONS
The detection kit developed in this study can simultaneously detect prfA and hly toxin genes of L. monocytogenes with good specificity, sensitivity, reproducibility and stability for use in food safety inspection.
Listeria monocytogenes/isolation & purification*
;
Gold Colloid
;
Bacterial Toxins/genetics*
;
Polymerase Chain Reaction/methods*
;
Hemolysin Proteins/genetics*
;
Bacterial Proteins/genetics*
;
DNA, Bacterial/genetics*
;
Food Microbiology
;
Heat-Shock Proteins
5.Dexmedetomidine attenuates heat stress-induced oncosis in human skeletal muscle cells by activating the Nrf2/Ho-1 pathway.
Yang LIU ; Yiqing JIA ; Chengcheng LI ; Handing MAO ; Shuyuan LIU ; Yi SHAN
Journal of Southern Medical University 2025;45(3):603-613
OBJECTIVES:
To investigate the protective effects of dexmedetomidine (DEX) against heat stress (HS)-induced oncosis in human skeletal muscle cells (HSKMCs) and its underlying mechanisms.
METHODS:
A HSKMC model of HS-induced oncosis were established by 43 ℃ water bath for 4 h, and the effects of treatments with 30 μmol/L DEX, ML385 (a Nrf2 inhibitor) +DEX, si-Nrf2+HS, and si-Nrf2+DEX prior to modeling on cell viability was assessed using CCK-8 assay. Oncosis characteristics were evaluated using transmission electron microscopy and Annexin V-FITC/PI flow cytometry. The oxidative stress markers (GSH, GSH-Px, MDA, SOD and ROS), mitochondrial membrane potential, energy metabolism, and inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the cells were quantified using standard kits, and the expressions of porimin, caspase-3 and Nrf2 pathway proteins were analyzed using Western blotting and qRT-PCR.
RESULTS:
HS induced typical oncotic features in HSKMCs including organelle swelling and cytoplasmic vacuolization. DEX pretreatment significantly attenuated these changes, reduced Annexin V+/PI+ cell ratio and cellular porimin expression, and lowered the levels of ROS and MDA while restoring GSH and SOD levels. DEX pretreatment also significantly increased the mitochondrial membrane potential and ATP level, upregulated the expressions of Nrf2, p-Nrf2, HO-1 and NQO1, and suppressed the expressions of TNF-α, IL-6 and IL-1β. The protective effects of DEX were obviously attenuated by interventions with ML385 or si-Nrf2.
CONCLUSIONS
DEX mitigates HS-induced HSKMC oncosis by activating the Nrf2/HO-1 pathway to relieve oxidative stress, mitochondrial dysfunction, and inflammatory responses.
Humans
;
Dexmedetomidine/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Heat-Shock Response/drug effects*
;
Signal Transduction/drug effects*
;
Membrane Potential, Mitochondrial
;
Muscle, Skeletal/cytology*
;
Heme Oxygenase-1/metabolism*
;
Apoptosis/drug effects*
6.Heat stress affects expression levels of circadian clock gene Bmal1 and cyclins in rat thoracic aortic endothelial cells.
Xiaoyu CHANG ; Hanwen ZHANG ; Hongting CAO ; Ling HOU ; Xin MENG ; Hong TAO ; Yan LUO ; Guanghua LI
Journal of Southern Medical University 2025;45(7):1353-1362
OBJECTIVES:
To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.
METHODS:
Twenty male SD rats were randomized equally into control group and heat stress group. After exposure to 32 ℃ for 2 weeks in the latter group, the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry. In the cell experiments, cultured rat thoracic aortic endothelial cells (RTAECs) were incubated at 40 ℃ for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA (si-Bmal1) or a negative sequence. In both rat thoracic aorta and RTAECs, the expressions of Bmal1, the cell cycle proteins CDK1, CDK4, CDK6, and cyclin B1, and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting. TUNEL staining was used to detect cell apoptosis in rat thoracic aorta, and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.
RESULTS:
Compared with the control rats, the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1, cyclin B1 and CDK1 in the thoracic aorta (P<0.05). In cultured RTAECs, heat stress caused significant increase of Bmal1, cyclin B1 and CDK1 protein expression levels, which were obviously lowered in cells with prior si-Bmal1 transfection. Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.
CONCLUSIONS
Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells, which can be partly alleviated by suppressing Bmal1 expression.
Animals
;
ARNTL Transcription Factors/genetics*
;
Male
;
Aorta, Thoracic/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Endothelial Cells/metabolism*
;
Apoptosis
;
Cells, Cultured
;
Heat-Shock Response
;
Cyclin B1/metabolism*
;
CDC2 Protein Kinase/metabolism*
;
Cyclins/metabolism*
;
RNA, Small Interfering
;
bcl-2-Associated X Protein/metabolism*
7.Elevated expressions of GRP78/CHOP in lupus nephritis: their diagnostic value and association with PERK/IRE1α pathway-mediated renal cell apoptosis.
Yihan WANG ; Weiqing ZHANG ; Ting FANG ; Zhimin XIE ; Yongsheng FAN ; Xinchang WANG
Journal of Southern Medical University 2025;45(10):2055-2061
OBJECTIVES:
To examine the changes in serum levels of endoplasmic reticulum stress (ERS) proteins GRP78/CHOP in patients with lupus nephritis (LN) and analyze their diagnostic value and association with renal pathological features.
METHODS:
From a sample bank established based on a multicenter cohort study of systemic lupus erythematosus (SLE), 60 LN patients and 35 SLE patients without renal involvement were randomly selected. ELISA was used to detect serum levels of GRP78 and CHOP in the patients to analyze their correlation with clinical features and their diagnostic ability for LN and active LN. MRL/lpr mice were used as an animal model of LN to examine their serum levels of GRP78 and CHOP expression and renal expressions of endoplasmic reticulum apoptosis-related proteins.
RESULTS:
Serum GRP78 and CHOP levels were significantly higher in LN patients than in SLE patients without renal involvement (P<0.05), and were also higher in active LN patients than in patients in the stable phase (P<0.05). Correlation analysis indicated that serum GRP78 and CHOP levels were positively correlated with SLEDAI scores and 24-h urinary protein. ROC analysis showed that CHOP had a high diagnostic ability for LN (AUC=0.762) and active LN (AUC=0.933). Consistent with the clinical findings, serum GRP78 and CHOP levels were elevated in LN mice, and the expressions of PERK and IRE1α pathway proteins were also increased in the kidneys of the mice. TUNEL staining showed increased renal cell apoptosis and elevated renal expressions of apoptosis-related proteins in LN mice.
CONCLUSIONS
Serum levels of GRP78/CHOP are increased in LN patients possibly in association with ERS-induced apoptosis mediated by the PERK/IRE1α dual pathway.
Endoplasmic Reticulum Chaperone BiP
;
Lupus Nephritis/blood*
;
Transcription Factor CHOP/blood*
;
Heat-Shock Proteins/blood*
;
Animals
;
Apoptosis
;
Humans
;
Mice
;
Mice, Inbred MRL lpr
;
Female
;
Adult
;
Endoribonucleases/metabolism*
;
Male
;
eIF-2 Kinase/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Young Adult
;
Endoplasmic Reticulum Stress
;
Kidney/metabolism*
;
Middle Aged
;
Signal Transduction
8.Expert consensus on pre-hospital emergency management of heatstroke (2024).
EXPERT GROUP ON HEATSTROKE PREVENTION OF PEOPLES' LIBERATION ARMY ; EMERGENCY MEDICINE COMMITTEE OF THE CHINESE AGING WELL ASSOCIATION ; SOCIETY OF EMERGENCY MEDICINE OF THE HAINAN PROVINCIAL MEDICAL ASSOCIATION ; COLLEGE OF EMERGENCY PHYSICIANS OF THE HAINAN PROVINCIAL MEDICAL DOCTOR ASSOCIATION
Chinese Critical Care Medicine 2025;37(1):1-8
Heatstroke, a life-threatening illness, poses a significant risk to human health, particularly in high-temperature and high-humidity environments. Timely and effective on-site management is critical for improving patient survival and prognosis. Rapid recognition, rapid assessment, and rapid cooling are the cornerstones of pre-hospital care. However, the absence of a standardized protocol for pre-hospital management of heatstroke has impeded the efficacy of treatment. This consensus, initiated by the Expert Group on Heatstroke Prevention of the People's Liberation Army, signifies a collaborative endeavor involving emergency medical personnel, nurses, and administrators from pre-hospital care, emergency departments, and intensive care units in both military and civilian domains. By systematically reviewing evidence-based medicine and clinical expertise in heatstroke prevention, on-site and in-transit care, as well as early treatment in emergency settings, the group has formulated the Expert consensus on pre-hospital emergency management of heatstroke (2024) after extensive discussions and iterative recommendations, which serve as a scientific and standardized framework for pre-hospital heatstroke emergency care. The consensus underscores the pivotal role of enhancing public awareness regarding heatstroke prevention and augmenting the rates of rapid recognition and rapid cooling for effective on-site heatstroke management. In high-risk industries, regions, or seasons for heatstroke, developing scientifically sound plans and conducting practical training can provide effective safety measures. Emergency personnel should undergo specialized training and assessments in knowledge and skills, ambulances should be equipped with effective cooling devices, and hospitals must maintain comprehensive emergency response capabilities. It is recommended to establish a regional heatstroke treatment network to optimize the allocation of emergency resources and streamline processes, thereby improving treatment outcomes and response times.
Heat Stroke/prevention & control*
;
Humans
;
Emergency Medical Services
;
Consensus
9.Evaluation value of C-reactive protein/albumin ratio combined with platelet count and Glasgow coma scale for prognosis of patients with heat stroke.
Shanshan SHI ; Zhengzhen WU ; Yong HUANG ; Xianglei FU
Chinese Critical Care Medicine 2025;37(2):160-164
OBJECTIVE:
To explore the prognostic value of C-reactive protein (CRP)/albumin (Alb) ratio combined with platelet count (PLT) and Glasgow coma score (GCS) in patients with heat stroke (HS).
METHODS:
A retrospective analysis was conducted on the clinical data of HS patients admitted to the department of intensive care unit (ICU) of Nanchong Central Hospital from May 1, 2020 to October 31, 2023. This included general information, admission GCS, laboratory indicators and 28-day prognosis. The differences in the above indicators were compared between two groups of patients with different prognoses. Statistically significant indicators from univariate analysis were included in multivariate Logistic regression analysis to screen for factors influencing 28-day mortality in HS patients. The predictive value of various influencing factors on the 28 days prognosis of HS patients were analyzed by receiver operator characteristic curve (ROC curve).
RESULTS:
A total of 73 HS patients were included, of whom 41 survived for 28-day and 32 died. There were no statistically significant differences in gender and age between the two groups of HS patients with different prognoses. The white blood cell count (WBC), neutrophil count (NEU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), CRP, and CRP/Alb ratio in the death group were significantly higher than those of the survival group, and the admission GCS score, platelet count (PLT), total bilirubin (TBil) and Alb were significantly lower than the survival group [WBC (×109/L): 14.80 (11.44, 17.15) vs. 11.96 (9.47, 14.82), NEU (×109/L): 13.05 (8.56, 15.67) vs. 9.50 (6.68, 12.09), AST (U/L): 108.00 (52.70, 291.50) vs. 64.50 (38.25, 110.50), ALT (U/L): 62.00 (19.50, 159.00) vs. 34.50 (20.75, 70.75), CRP (mg/L): 22.49 (3.42, 58.93) vs. 3.68 (1.01, 11.46), CRP/Alb ratio: 0.53 (0.08, 1.77) vs. 0.08 (0.02, 0.44), GCS score: 7.0 (5.0, 8.0) vs. 8.5 (7.0, 11.0), PLT (×109/L): 107.00 (73.50, 126.00) vs. 131.50 (107.50, 176.25), TBil (mmol/L): 15.60 (10.00, 25.30) vs. 21.40 (14.80, 30.05), Alb (g/L): 32.65 (32.53, 49.30) vs. 38.70 (36.20, 40.40), all P < 0.05]. Binary Logistic regression analysis showed that the GCS score [odds ratio (OR) = 0.686, 95% confidence interval (95%CI) was 0.491-0.959, P = 0.028], PLT (OR = 0.973, 95%CI was 0.954-0.992, P = 0.005), NEU (OR = 1.312, 95%CI was 1.072-1.606, P = 0.009) and CRP/Alb ratio (OR = 7.652, 95%CI was 1.632-35.881, P = 0.010) were independent influencing factors for 28-day mortality in HS patients. ROC curve analysis showed that the area under the curve (AUC) of GCS score, PLT, and CRP/Alb ratio for single prediction of 28-day prognosis in HS patients was 0.705, 0.752, and 0.729, and the combination of all three predicted the highest AUC of 28-day prognosis in HS patients (0.917), with a sensitivity and specificity of 86.2% and 81.2%, respectively.
CONCLUSION
CRP/Alb ratio, PLT, and GCS score are independent influencing factors affecting the prognosis of HS patients, and all of them have a certain predictive value for the prognosis of HS patients, in which the combination of the three has a higher predictive value for the prognosis of HS patients.
Humans
;
C-Reactive Protein/analysis*
;
Prognosis
;
Glasgow Coma Scale
;
Retrospective Studies
;
Heat Stroke/diagnosis*
;
Platelet Count
;
Male
;
Female
;
Serum Albumin/analysis*
;
Middle Aged
;
Aged
;
Adult
;
ROC Curve
10.G protein-coupled estrogen receptor alleviates lung injury in mice with exertional heat stroke by inhibiting ferroptosis.
Ziwei HAN ; Jiansong GUO ; Xiaochen WANG ; Zhi DAI ; Chao LIU ; Feihu ZHOU
Chinese Critical Care Medicine 2025;37(3):268-274
OBJECTIVE:
To investigate whether the G protein-coupled estrogen receptor (GPER) can attenuates acute lung injury in mice with exertional heat stroke (EHS) by inhibiting ferroptosis.
METHODS:
Sixty SPF-grade male C57BL/6 mice were randomly divided into four groups: normal control group (control group), EHS model group (EHS group), dimethyl sulfoxide (DMSO) solvent group (EHS+DMSO group), and GPER-specific agonist G1 group (EHS+G1 group), with 15 mice in each group. All mice underwent 14 days of adaptive training at 24-26 centigrade before modeling, and the EHS model was established using a high-temperature treadmill device. After successful modeling, the mice were allowed to cool naturally at room temperature. In the EHS+G1 group, 40 μg/kg of the GPER-specific agonist G1 was slowly injected intraperitoneally immediately after modeling. In the EHS+DMSO group, 40 μg/kg of DMSO was slowly injected intraperitoneally immediately after modeling. The control group received no treatment. Five hours after modeling, abdominal aortic blood was collected, and lung tissues were harvested after euthanasia. The lung coefficient was calculated to evaluate lung injury. Lung histopathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and a lung histopathological score was assigned. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and Fe2+ in lung tissue. Immunofluorescence was used to detect the expression of glutathione peroxidase 4 (GPX4). Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of GPX4, ferroportin 1 (FPN1), and ferritin heavy chain 1 (FTH1). Western blotting was performed to detect the protein expression of GPX4, FPN1, and FTH1.
RESULTS:
Compared with the control group, the lung coefficient and lung histopathological score were significantly increased in the EHS group. HE staining showed significant thickening and unevenness of the alveolar septa and alveolar walls, partial alveolar collapse, and extensive erythrocyte, inflammatory cell, and plasma-like material extravasation in the alveolar spaces. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly elevated. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue. Western blotting and RT-PCR showed significantly reduced protein and mRNA expression of GPX4, FPN1, and FTH1 in lung tissue. Compared with the EHS group, the EHS+G1 group showed a significant reduction in lung coefficient and lung histopathological score [lung coefficient (mg/g): 3.9±0.1 vs. 4.6±0.3, lung histopathological score: 4.2±0.2 vs. 6.9±0.2, both P < 0.05]. HE staining revealed reduced severity of lung tissue fluid extravasation, inflammatory infiltration, decreased hemorrhage, and less severe alveolar structural damage. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly reduced [TNF-α (ng/L): 44.3±0.2 vs. 64.6±0.3, IL-1β (ng/L): 69.3±0.4 vs. 97.8±0.2, MDA (nmol/L): 2.8±0.3 vs. 3.6±0.5, Fe2+ (nmol/L): 0.021±0.004 vs. 0.028±0.004, all P < 0.05]. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue (fluorescence intensity: 35.53±2.41 vs. 16.45±0.31, P < 0.05). RT-PCR and Western blotting showed significantly increased mRNA and protein expression of GPX4, FPN1, and FTH1 in lung tissue [mRNA expression: GPX4 mRNA (2-ΔΔCt): 0.44±0.05 vs. 0.09±0.01, FPN1 mRNA (2-ΔΔCt): 0.77±0.17 vs. 0.42±0.14, FTH1 mRNA (2-ΔΔCt): 0.75±0.04 vs. 0.58±0.01; protein expression: GPX4/β-actin: 0.96±0.11 vs. 0.24±0.04, FPN1/β-actin: 1.26±0.21 vs. 0.44±0.14, FTH1/β-actin: 0.27±0.12 vs. 0.15±0.07; all P < 0.05]. However, there were no statistically significant differences in any of the above indicators between the EHS+DMSO group and the EHS group.
CONCLUSION
Activation of GPER can attenuate EHS-related lung injury in mice, and its mechanism may be related to the activation of the GPX4 signaling pathway and inhibition of ferroptosis.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Heat Stroke/metabolism*
;
Receptors, G-Protein-Coupled
;
Ferroptosis
;
Receptors, Estrogen
;
Acute Lung Injury/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/metabolism*
;
Lung Injury
;
Lung/metabolism*

Result Analysis
Print
Save
E-mail