1.Current research status and application prospects of mesenchymal stem cell-derived exosomes in islet transplantation
Rui LI ; Dianxiang WANG ; Zhaowei LIANG ; Bing HAN ; Hao LIAN
Organ Transplantation 2025;16(1):163-168
Type 1 diabetes mellitus is a chronic autoimmune disease caused by the destruction of pancreatic islet β cells. Pancreatic islet transplantation provides a treatment method for patients with type 1 diabetes mellitus to restore endogenous insulin secretion. However, some problems limit the widespread application of islet transplantation, such as the shortage of donors and post-transplantation rejection damage. Mesenchymal stem cell-derived exosome (MSC-Exo) has become a potential tool for islet transplantation therapy due to their immunomodulatory and tissue repair capabilities. MSC-Exo shows great promise for application, because of low immunogenicity, easily being stored and transported, and the potential as drug delivery vehicles. However, challenges such as preparation, purification, standardization and safety verification need to be overcome before converting MSC-Exo into clinical practice. Therefore, this article reviews the application and potential advantages of MSC-Exo in islet transplantation, aiming to providing more effective and safer treatment options for patients with type 1 diabetes mellitus.
2.Microscopic Mechanism of Chronic Liver Disease and Novel Thinking of Medicine Management Based on Theory of "Yang Transforming Qi While Yin Constituting Form-sweat Pore"
Yuying XU ; Changpu ZHAO ; Rongzhi LI ; Yu ZHANG ; Fei WANG ; Chenyuan HAO ; Guangjie SHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):244-255
The theory of "Yang transforming Qi while Yin constituting form" in the Huangdi's Internal Classic is derived from the application, transformation, movement, and balance of Tao. It is highly condensed, revealing the true meaning of Tao and guiding the changes and progress of all natural things, including diseases. Therefore, the appearance of various physical diseases is the manifestation of Yin-Yang Qi transformation. Sweat pore, formed by the Qi transformation of Yin and Yang, is the nourishing and regulating system. It serves as the hub and channel, assisting in the flow and transformation of Qi, facilitating the exchange of material, energy, and information with the outside world. With sweat pore as the hub and based on the macro-control and holistic thinking of "Yang transforming Qi while Yin constituting form", this paper explores the microscopic mechanisms underlying chronic liver disease. In combination with the roles of mitochondria, exosomes, and the ultraliver sieve structure in the formation and progression of chronic liver disease, this paper elucidates the close internal relationship between the disease's initial quality, symptom signs, and its physiological and pathological functions under the guidance of this theory. Modern studies have shown that autophagy, intestinal flora disorders, glucose and lipid metabolism disturbances, activation of inflammatory factors, ferroptosis, and other microscopic pathological mechanisms are involved in the occurrence and development of chronic liver disease. The common connotation of the Yin-Yang concept in traditional Chinese medicine (TCM) and the pathological mechanisms in modern medicine is deeply analyzed. The corresponding relevant microscopic mechanisms and the guiding role of the theory of "Yang transforming Qi while Yin constituting form-sweat pore" in the management of chronic liver disease are summarized. Wind medicine promotes growth and transformation through sweat pore. The combination of pungent and sweet medicines facilitates Yang and disperse Yin. The formulas, combining the characteristics of wind medicine and pungent and sweet medicines, fit the principle of "Yang transforming Qi while Yin constituting form-sweat pore". This paper combines both macro and micro perspectives to explain the scientific connotation and microscopic mechanisms of chronic liver disease based on the theory of "Yang transforming Qi while Yin constituting form-sweat pore", and explore the prevention and treatment of chronic liver disease through the principles, methods, prescriptions, and medicines featured by combination of pungent and sweet medicines, facilitating Yang, activating sweat pore, and dispersing Yin, providing new ideas and reference for the clinical treatment of chronic liver disease.
3.Effect of Shenge Bushen Capsules and Its Polysaccharides and Flavonoids on Precocious Puberty in Young Mice
Hong SUN ; Fan LEI ; Chenggong LI ; Shixian HU ; Weihua WANG ; Bin REN ; Juan HAO ; Rui LUO ; Lijun DU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):95-103
ObjectiveTo explore the effect of Shenge Bushen Capsules (SBC) on sexual development in normal 3-week-old mice. MethodsThe experiment consisted of two parts. In the first part, mice were divided into four groups: The control group and the low, medium, and high-dose SBC groups (234.7, 469.4, 938.7 mg·kg-1, respectively). In the second part, mice were divided into four groups: Control group, Pseudostellariae Radix polysaccharide (PRP) group, total flavonoids group, and SBC group, all receiving a dose of 469.4 mg·kg-1. After 7 days of administration, the vaginal opening of female mice and the descent of testes and scrotum in male mice, as well as the ovarian and testicular organ indices, were observed. After 4 weeks of administration, female and male mice were housed together for 2 days, and the pregnancy rate of females was monitored. After delivery, the pregnant female mice continued receiving the treatment for 4 weeks, and the sexual development of their offspring, including vaginal opening, testicular descent, and organ indices of ovaries and testes, was observed. Serum sex hormones were measured by enzyme-linked immunosorbent assay (ELISA), and the expression of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) proteins in the hypothalamus was assessed by Western blot. ResultsCompared with the control group, there was no significant effect on the vaginal opening of female mice or the descent of testes in male mice after 7 days of SBC administration. After 4 weeks of administration, the pregnancy rate in the low-dose group was significantly reduced (P<0.05), but no significant effects were observed in the other groups. The three doses of SBC did not significantly affect the ovarian or testicular organ indices, and there was no significant upregulation in the expression of GnRH or GH in the hypothalamus. The primary component of SBC, Pseudostellariae Radix polysaccharide, significantly reduced the vaginal opening in female mice after 7 days of administration (P<0.05). After 4 weeks, the serum estradiol levels of non-pregnant female mice were decreased (P<0.05), but there was no significant effect on the expression of GnRH or GH proteins in the hypothalamus of either male or female mice. Additionally, there were no significant effects on precocious puberty indicators, such as vaginal opening and testicular descent, in the offspring mice. ConclusionSBC does not significantly promote precocious puberty in young mice, and it does not have any noticeable effects on the pregnancy rate of adult mice or the sexual development of their offspring.
4.Premature Aging Prevention and Treatment Guided by Essence-Qi-Spirit Theory of Qiluo Doctrine: A Review
Chuanyuan JI ; Hongrong LI ; Jiameng HAO ; Dandong WANG ; Yucong MA ; Kun MA ; Cong WEI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):279-285
The theoretical basis of premature aging originates from The Yellow Emperor's Inner Classic. The etiology of premature aging is complex, and the disease mechanism is based on deficiency. The treatment for premature aging is based on tonicity. The essence-Qi-spirit theory of Qiluo doctrine summarizes that "essence is the origin of life, Qi is the driving force of life, and spirit is the embodiment of life", which is the law of life. The theory puts forward the core disease mechanism of aging, which states that "deficiency of kidney essence is the root of aging, deficiency of primordial Qi is the key to aging, impairment of soma and spirit is the manifestation of aging". The theory also proposes the treatment of "tonifying kidney and supplementing essence, harmonizing Yin and Yang, warming and supporting primordial Qi, and nourishing soma and spirit" and the representative anti-aging drugs. The article unfolds from the perspective of the concepts of natural life span, premature senility before fifty, decline, and aging and also explains the origins and connotations of premature aging. The article explains the disease mechanism of premature aging under the guidance of the essence-Qi-spirit theory of Qiluo doctrine, which is "early deprivation of kidney essence, deficiency of primordial Qi, accumulation of deficiencies into impairment, and decline and impairment of soma and spirit", summarizes the progress of modern medical research on the treatment of premature aging and representative drugs, and finds that Bazi Bushen capsules have a precise therapeutic effect on the overall premature aging, systematic functional decline, and related diseases. The study provides theoretical basis and new ideas to solve the problems of premature aging and geriatric diseases.
5.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
6.Adrenocortical carcinoma with rhabdoid features: a case report and literature review
Mingchuan CHU ; Huimin SUN ; Hao WANG ; Jian SONG ; Yongshun GUO
Journal of Modern Urology 2025;30(1):64-68
[Objective] To investigate and summarize the clinicopathological features, diagnosis, treatment and prognosis of adrenocortical carcinoma with rhabdoid features. [Methods] The clinical diagnosis and treatment of a case of adrenocortical carcinoma with rhabdoid features admitled to Department of Urology, Weifang People's Hospital were reported.The clinical manifestations, pathological features, diagnosis and prognosis of the disease were analyzed in combination with relevant literature. [Results] A 34-year-old male patient was admitted due to scrotal distension and pain that had persisted for 6 months.Imaging examination showed a huge soft tissue tumor in the left adrenal region of the retroperitoneum with compression displacement of the left kidney, leading to obstruction of venous return in the left spermatic vein, which in turn caused varicose veins.The levels of serum renin, angiotensin, aldosterone, cortisol, and catecholamine were within normal ranges.Surgical resection of the tumor was performed, and postoperative pathological examination revealed that the tumor tissue was predominantly composed of rhabdoid cells, exhibiting positive immunohistochemical staining for INI 1, Syn, Calretinin and Vimentin.Genetic testing did not identify any deletion of SMARCB1 and SMARCA4 mutations.Therefore, the diagnosis was adrenocortical carcinoma with rhabdoid features.At the current 20-month follow-up, no recurrence or metastasis was observed.A review of the literature found that only 7 cases of this disease had been reported. [Conclusion] Adrenocortical carcinoma with rhabdoid features is a rare disease, and a definitive diagnosis is dependent upon pathological examination.Surgical resection remains the primary treatment.Long-term follow-up is essential, and further research is needed to evaluate the impact of adjuvant therapy.
7.Optimization of osmotic pressure swelling method in the process of hemoglobin extraction from red blood cells
Honghui ZHANG ; Wentao ZHOU ; Shasha HAO ; Hong WANG ; Jiaxin LIU ; Chengmin YANG ; Shen LI ; Fengjuan LI
Chinese Journal of Blood Transfusion 2025;38(1):91-96
[Objective] To extract hemoglobin (Hb) from red blood cells using osmotic pressure swelling method, expected to achieve a hemoglobin dissolution rate of ≥80% and a cell membrane integrity rate of ≥70%. [Methods] Human umbilical cord blood red blood cells were used as raw materials and phosphate buffer solution was used as the swelling solution for red blood cells. A three factor three-level orthogonal experiment (n=3) was conducted to determine the optimal matching conditions for selecting the osmolality molar concentration of phosphate buffer solution, pH value of hypotonic phosphate buffer solution and volume ratio of hypotonic phosphate buffer solution to washed red blood cells. Red blood cell swelling solution samples (n=6) were prepared by the optimal matching conditions and the original process conditions. The hemoglobin dissolution rate and cell membrane integrity rate were checked. In the expanded comparative experiment, red blood cell swelling solution samples (n=6) were prepared by the optimal matching conditions and the original process conditions, which was filtered by ultrafiltration membranes. The filtration time and hemoglobin yield were checked. [Results] The optimal matching conditions for preparing red blood cell swelling solution were obtained through orthogonal experiment as follows: osmotic pressure molar concentration was 30 mOsmol/Kg, pH was 7.8, and phosphate buffer to red blood cell volume ratio was 6∶1. On the basis of the above conditions, the red blood cell swelling solution sample was compared with the original process sample: the hemoglobin dissolution rate was (82.4±1.8)% vs (78.6±3.0)% (P<0.05), and the cell membrane integrity rate was (65.8±4.0)% vs (28.7±2.3)% (P<0.05). In the expanded comparative experiment, the optimal matching conditions were compared with the original process conditions: filtration time(s) (327±9) vs (434±13) (P<0.05), and hemoglobin yield was (72.3±1.2)% vs (66.0±1.4)% (P<0.05). [Conclusion] Compared with the original preparation process, the hemoglobin extraction process which optimized through orthogonal experiments greatly reduces the cell membrane fragmentation rate and minimizes the entry of cell membrane matrix into the target solution, ensuring a slightly higher hemoglobin dissolution rate, and reducing the preparation difficulty for the subsequent cell membrane separation and further purification.
8.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction.
9.Dihuang Yinzi Improves Cognitive Function of Mouse Model of Learning and Memory Impairments by Regulating Synaptic Plasticity via SIRT2
Wenting WANG ; Yangjing HAO ; Wenna SU ; Qinqing LI ; Shifeng CHU ; Junlong ZHANG ; Wenbin HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):9-17
ObjectiveTo investigate the effects of Dihuang Yinzi on the cognitive function in the mouse model of learning and memory impairments induced by scopolamine (SCOP) and explore the treatment mechanism. MethodsA mouse model of learning and memory impairment was induced by intraperitoneal injection of SCOP. Sixty male C57BL/6J mice were randomized into six groups: control (0.9% NaCl, n=10), model (SCOP 1 mg·kg-1·d-1, n=10), low-, medium-, and high-dose Dihuang Yinzi (SCOP 1 mg·kg-1·d-1 + Dihuang Yinzi 5.5, 11.0, and 22.0 g·kg-1·d-1, n=10), and donepezil (SCOP 1 mg·kg-1·d-1 + donepezil 0.84 mg·kg-1·d-1, n=10). Mice were administrated with corresponding drugs for 6 weeks. Modeling started in the 4th week, and mice in other groups except the control group were injected with SCOP intraperitoneally 40 min after daily gavage. Behavioral testing began in the 5th week, 30 min after modeling each day. The Morris water maze and novel object recognition tests were carried out to evaluate the spatial learning and memory function of mice. Nissl staining was employed to observe the survival of neurons and Nissl bodies in the hippocampal CA1 region. Western blot was employed to determine the protein levels of silent information regulator 2 (SIRT2), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor 1 (GluA1), protein kinase A (PKA), cAMP response element-binding protein (CREB), phosphorylated-CREB (p-CREB), postsynaptic density protein 95 (PSD95), growth-associated protein-43 (GAP-43), and synaptophysin (SYN) in the hippocampus. Immunofluorescence was used to detect the expression of doublecortin (DCX) in the hippocampal dentate gyrus (DG) region. ResultsCompared with the control group, the model group showed impaired learning and memory (P<0.01), obvious neuronal damage in the hippocampal CA1 region, a reduction in neuron survival (P<0.01), a decrease in DCX expression in the hippocampal DG region (P<0.01), down-regulated proteins levels of GluA1, PKA, p-CREB/CREB, PSD95, SYN, and GAP-43 in the hippocampal tissue (P<0.05, P<0.01), and an up-regulated protein level of SIRT2 (P<0.01). Compared with the model group, the medium- and high-dose Dihuang Yinzi groups and the donepezil group showed improvements in learning and memory (P<0.05, P<0.01), while the low-, medium-, and high-dose Dihuang Yinzi groups and the donepezil group had increased neuron survival (P<0.05, P<0.01). The medium-dose Dihuang Yinzi group and the donepezil group showed increased DCX expression (P<0.05, P<0.01). The medium- and high-dose Dihuang Yinzi groups and the donepezil group showed up-regulation in the protein levels of GluA1, PKA, p-CREB/CREB, PSD95, SYN, and GAP-43 (P<0.05, P<0.01) and down-regulation in the protein level of SIRT2 (P<0.01). ConclusionDihuang Yinzi can improve the cognitive function in the mouse model of learning and memory impairments induced by SCOP by inhibiting the upregulation of SIRT2, activating the PKA/CREB signaling pathway, improving synaptic plasticity, and reducing hippocampal neuronal damage.
10.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.

Result Analysis
Print
Save
E-mail