1.Guideline-driven clinical decision support for colonoscopy patients using the hierarchical multi-label deep learning method.
Junling WU ; Jun CHEN ; Hanwen ZHANG ; Zhe LUAN ; Yiming ZHAO ; Mengxuan SUN ; Shufang WANG ; Congyong LI ; Zhizhuang ZHAO ; Wei ZHANG ; Yi CHEN ; Jiaqi ZHANG ; Yansheng LI ; Kejia LIU ; Jinghao NIU ; Gang SUN
Chinese Medical Journal 2025;138(20):2631-2639
BACKGROUND:
Over 20 million colonoscopies are performed in China annually. An automatic clinical decision support system (CDSS) with accurate semantic recognition of colonoscopy reports and guideline-based is helpful to relieve the increasing medical burden and standardize the healthcare. In this study, the CDSS was built under a hierarchical-label interpretable classification framework, trained by a state-of-the-art transformer-based model, and validated in a multi-center style.
METHODS:
We conducted stratified sampling on a previously established dataset containing 302,965 electronic colonoscopy reports with pathology, identified 2041 patients' records representative of overall features, and randomly divided into the training and testing sets (7:3). A total of five main labels and 22 sublabels were applied to annotate each record on a network platform, and the data were trained respectively by three pre-training models on Chinese corpus website, including bidirectional encoder representations from transformers (BERT)-base-Chinese (BC), the BERT-wwm-ext-Chinese (BWEC), and ernie-3.0-base-zh (E3BZ). The performance of trained models was subsequently compared with a randomly initialized model, and the preferred model was selected. Model fine-tuning was applied to further enhance the capacity. The system was validated in five other hospitals with 3177 consecutive colonoscopy cases.
RESULTS:
The E3BZ pre-trained model exhibited the best performance, with a 90.18% accuracy and a 69.14% Macro-F1 score overall. The model achieved 100% accuracy in identifying cancer cases and 99.16% for normal cases. In external validation, the model exhibited favorable consistency and good performance among five hospitals.
CONCLUSIONS
The novel CDSS possesses high-level semantic recognition of colonoscopy reports, provides appropriate recommendations, and holds the potential to be a powerful tool for physicians and patients. The hierarchical multi-label strategy and pre-training method should be amendable to manage more medical text in the future.
Humans
;
Colonoscopy/methods*
;
Deep Learning
;
Decision Support Systems, Clinical
;
Female
;
Male
2.Berberine attenuates renal injury in rats with chronic renal failure
Dandan XIE ; Han LI ; Baiju WANG ; Na WANG ; Hanwen CHEN ; Lei LIU
Basic & Clinical Medicine 2024;44(12):1663-1669
Objective To investigate the effect of berberine(BBR)on chronic renal failure(CRF)rats and its mechanism.Methods CRF rat model was established by removing 5/6 kidneys and all rats were randomly divided into sham group,chronic renal failure model group,berberine treatment group and uremic clearance granules(UCG)treatment group with 10 in each.Renal function indexes in each group were examined by an automated bio-chemistry instrument.The level of MMP-2 and MMP-9 were detected by ELISA.The degree of renal fibrosis was observed by PAS and Masson staining microscopy.The expression of NF-κB p65 and IL-6 were detected by immu-nohistochemistry method.Expression of fibrosis-related proteins and TGF-β1/ERK signaling pathway proteins in re-nal tissues was detected by Western blot.Results Compared with sham group,renal function and renal histopatho-logical damage was significantly increased in the model group,and BBR improved renal function and histopathological damage in CRF rats.Compared with the sham group,the serum level of MMP-2 and MMP-9 was significantly de-creased(P<0.05),the expression of IL-6 and NF-κB p65 was up-regulated(P<0.05).The expression of FN,α-SMA,Col-Ⅰ,Col-Ⅲ,TGF-β1,and p-ERK1/2 proteins was up-regulated in the model group of rats(P<0.05),while the BBR treatment significantly reversed the expression of these molecules(P<0.05).Conclusions BBR may improve inflammation and fibrosis by inhibiting TGF-β1/ERK1/2 pathway,and play a protective role in the kidney of CRF rat.
3.3D road map technology based on Azurion comprehensive large plate imaging system versus common road map in interventional treatment of intracranial aneurysms
Maogang LI ; Hanwen LIU ; Feng LI ; Linghai XIE
Journal of Interventional Radiology 2024;33(11):1203-1208
Objective To compare the application value of Azurion comprehensive large plate imaging system based on 3D road map technology and conventional road map in interventional treatment of intracranial aneurysms.Methods A total of 73 patients with intracranial aneurysms,who received treatment at the Department of Neurosurgery of Ganzhou Municipal Hospital of China from February 2021 to May 2023,were enrolled in this study.The patients were divided into study group(n=73,under the guidance of 3D real-time road map)and control group(n=75,under the guidance of conventional road map).The surgery-related indicators,embolization density,image quality,serological indicators,and quality of life were compared between the two groups.The patients were followed up for 6 months.The recurrence rate and prognosis were compared between the two groups.Results Compared with the control group,in the study group the accurate location rate of microcatheter with single catheterization manipulation was higher(P<0.05),the incidence of intraoperative rupture bleeding was lower(P<0.05),the time spent for operation was shorter(P<0.05),and the amount of the contrast agent used and the machine radiation dose were lower(P<0.05).The Raymond grade distribution in the study group was better than that in the control group(P<0.05).The excellent rate of image quality in the study group was higher than that in the control group(P<0.05).The differences of matrix metalloproteinase 9(MMP-9)and neuron-specific enolase(NSE)before and after treatment in the study group were higher than those in the control group(both P<0.05).The differences of material well-being life,social function,mental health and physical health scores before and after treatment in the study group were higher than those in the control group(all P<0.05).The postoperative recurrence rate in the study group was lower than that in the control group(P<0.05).No statistically significant difference in Glasgow prognostic Scale(GOS)score existed between the two groups(P>0.05).Conclusion Compared with the conventional road map,the use of Azurion comprehensive large plate imaging system based on 3D road map technology has a definite and excellent effect in the interventional treatment of intracranial aneurysms,which can shorten the operation time,reduce the used dose of contrast agent,decrease the risk of intraoperative rupture with bleeding and postoperative recurrence,regulate the expression of serum NSE and MMP-9,improve the quality of life of patients,and ensure a satisfactory prognosis.
4.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
7.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
10.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Result Analysis
Print
Save
E-mail