1.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.Determination method of plasma concentrations of 7 anti-tumor drugs and its application
Jinxiu LYU ; Nan YAN ; Wenjun XU ; Jing ZHAO ; Hua ZHU ; Pengzhou HANG
China Pharmacy 2025;36(4):475-481
OBJECTIVE To establish a method for simultaneous determination of 7 anti-tumor drugs (irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate) in human plasma and apply it to the clinic. METHODS After precipitating with a methanol-acetonitrile mixture (1∶ 1, V/V) containing 0.1% formic acid, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the plasma concentration, using deuterium isotopes of each analyte as internal standards. The chromatography was performed on the Agilent Eclipse Plus C18 column with a gradient elution of water (containing 0.1% formic acid+0.04% 5 mmol/L ammonium formate) as mobile phase A and acetonitrile (containing 0.1% formic acid) as mobile phase B. The flow rate was 0.6 mL/min, and the column temperature was set at 40 ℃ . The sample size was 10 μL, and the analysis lasted for 5.5 min. Electrospray ionization was used in positive and negative ion mode, and multiple reaction monitoring mode was used. The ion pairs used for quantitative analysis were m/z 587.1→167.1 (irinotecan), m/z 360.1→244.1 (capecitabine), m/z 876.4→308.0 (paclitaxel), m/z 830.3→304.2 (docetaxel), m/z 372.1→129.1 (tamoxifen), m/z 284.1→242.1 (letrozole), and m/z 455.0→ 308.0 (methotrexate). A total of 97 patients with malignant tumors in our hospital were selected to measure the plasma concentrations of 7 anti-tumor drugs using the above method. RESULTS The linear ranges of irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate were 2-1 000 ng/mL (r=0.994 3), 20-10 000 ng/mL (r=0.997 5), 2-1 000 ng/mL (r=0.997 9), 1-500 ng/mL (r=0.995 8), 1-500 ng/mL (r=0.995 2), 1-500 ng/mL (r=0.996 4), 10-5 000 (r=0.997 7), respectively. The quantitative lower limits were 2, 20, 2, 1, 1, 1 and 10 ng/mL; RSDs of intra-assay precision were 0.08%-14.86% (n=6). RSDs of inter-batch precision were 1.51%-11.55% (n=3), and the accuracies were 89.17%-114.93% (n=6). The matrix effects ranged from 89.89%-119.74% (n=6). RSDs of the stability tests were 1.98%-14.88% (n=6). The results of E-mail:hangpengzhou@163.com clinical application showed, the average plasma concentrations of irinotecan, capecitabine, paclitaxel and docetaxel were 704.09, 909.40, 36.45, 150.43 ng/mL, respectively. The values of the coefficient of variation were 25.24%, 62.65%, 122.69%, and 92.27%. CONCLUSIONS The established LC-MS/MS method is simple and rapid, and can be used for the simultaneous determination of 7 commonly used anti-tumor drugs in the plasma of patients with malignancy.
7.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
8.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Epidemiological characteristics of scrub typhus in Huai'an, Jiangsu Province in 2006 - 2024
Lei XU ; Zhizhen CUI ; Qiang GAO ; Hao JU ; Chuanyu WAN ; Ranfeng HANG ; Shiyao WU ; Ben CAI ; Zheng ZHANG ; Haiyan GE
Journal of Public Health and Preventive Medicine 2025;36(6):39-42
Objective To describe and analyze the epidemiological characteristics of scrub typhus in Huai'an, Jiangsu Province from 2006 to 2024 and explore the long-term incidence trend and distribution of high-risk areas, and to formulate targeted prevention and control strategies. Methods The scrub typhus case report data of Huai'an from 2006 to 2024 in the Chinese Disease Prevention and Control Information System were extracted for descriptive analysis. Results A total of 898 cases of scrub typhus were reported in Huai'an, with an average annual incidence rate of 0.96 per 100 000 from 2006 to 2024. There was a turning point in the incidence trend of scrub typhus in 2011. From 2006 to 2011, the annual percentage change (APC) was 47.09% (95% CI: 7.53 - 859.39), and the upward trend was statistically significant (P < 0.05). From 2012 to 2024, the APC was -2.12% (95% CI: -29.09 - 3.75), and the downward trend was not statistically significant. October and November were the high-incidence months, and the total concentration from 2006 to 2024 was 0.93, indicating that scrub typhus had strict seasonality. The circular distribution method estimated that the peak period of the epidemic was from October 11th to November 25th, and the peak day of incidence was November 3rd. Jinhu County was a high-incidence area. The ratio of male to female cases was 1.03. The age group with the highest reported incidence was 40 to < 80 years old. The occupation with the highest proportion was farmers, accounting for 78.03%. Conclusion From 2006 to 2024, scrub typhus in Huai'an shows a peak every 3 - 4 years. Middle-aged and elderly farmers are the key population at risk, and Jinhu County is a key area. In the future, targeted health education should be carried out to effectively control the prevalence of scrub typhus.


Result Analysis
Print
Save
E-mail