1.Treatment strategy after neoadjuvant PD-1 inhibitor combined with chemotherapy for patients with locally advanced esophageal squamous cell carcinoma
Shifa ZHANG ; Haibo CAI ; Liji CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):216-222
Objective To investigate the necessity of further surgery for patients with locally advanced esophageal squamous cell carcinoma following treatment with the programmed cell death-1 (PD-1) inhibitor combined with chemotherapy, and to assess its impact on survival. Methods Patients with stage ⅡA to ⅢB esophageal squamous cell carcinoma who received immunotherapy combined with chemotherapy at our hospital from January 2020 to June 2022 were selected for this study. Based on whether they underwent surgery after receiving PD-1 inhibitor combined with chemotherapy, patients were divided into a surgery group and a non-surgery group. We compared the general clinical data, side effects, clinical complete response rates, progression-free survival (PFS), and overall survival (OS) between the two groups. Results A total of 58 patients were included in the study, comprising 45 males and 13 females, with an average age of (65.5±6.9) years. There were no statistical differences in general clinical data or adverse reactions between the two groups. Univariate analysis revealed that the objective response rate and surgery were significantly associated with PFS (P<0.05). Binary logistic regression analysis showed that surgery was the only independent risk factor for PFS (P=0.003). Kaplan-Meier survival analysis showed that the PFS and OS in the surgery group were significantly higher than those in the non-surgery group (HR=0.13, 95%CI 0.036 to 0.520, P<0.001; HR=0.17, 95%CI 0.045 to 0.680, P=0.004). Conclusion After treatment with the PD-1 inhibitor combined with chemotherapy, patients with locally advanced esophageal squamous cell carcinoma still require surgical intervention to achieve improved PFS and OS.
2.Application of Anti-tumor Compatibility Structure of Chinese Medicine
Lanpin CHEN ; Feng TAN ; Xiaoman WEI ; Junyi WANG ; Liu LI ; Mianhua WU ; Haibo CHENG ; Dongdong SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):198-208
Malignant tumors are one of the major diseases that endanger human life and health. Chinese medicine has unique advantages in clinical anti-tumor treatment. However, how to translate the anti-tumor effects of Chinese medicine into clinical practice is the core issue that must be addressed in the process of treating malignant tumors with traditional Chinese medicine (TCM). Unlike modern chemical drugs, the compatibility application of Chinese medicine is the key factor that determines whether Chinese medicine can achieve optimal anti-tumor efficacy and realize the goal of "enhancing efficacy and reducing toxicity". The formulation structure based on this compatibility is the basic form for the safe, efficient, and rational clinical use of anti-tumor Chinese medicine, and it mainly includes three categories: herb pairs, tri-herbal combinations, and compound compatibility. Although herb pairs have the characteristics of a simple structure and strong targeting (enhancing efficacy and reducing toxicity), they often have a single effect and cannot fully address the complex pathogenesis of tumors. As a result, herb pairs are rarely used alone in practice. Compared to herb pairs, tri-herbal combinations broaden the application scope of herbs in clinical treatment, but their therapeutic range remains limited. The traditional "sovereign, minister, assistant, and guide" compound prescription, which includes herb pairs and tri-herbal combinations, improves the efficacy of herbs in treating serious diseases, hypochondriasis, chronic diseases, and miscellaneous disorders. However, due to the limitations of its historical background, it has not been integrated with modern clinical practice and modern pharmacological research, which restricts the development of compound compatibility theory. With the emergence of modern medical technology, it has been combined with traditional compatibility theory of Chinese medicine to create an innovative modern compatibility theory. This includes the "aid medicine" theory derived from modern Chinese medicine pharmacology, which compensates for the inability of the "sovereign, minister, assistant, and guide" theory to accurately apply medicine. Additionally, the "state-targeted treatment based on syndrome differentiation" theory, developed from pharmacology and modern medicine, addresses the deficiency in disease cognition in the "sovereign, minister, assistant, and guide" theory. Under the guidance of these compatibility forms and theories, clinical anti-tumor Chinese medicine can exert its maximum anti-tumor efficacy, which is of great significance for the application of Chinese medicine in clinical tumor treatment.
3.Effect of Scutellariae Radix Combined with EGFR-TKIs on Non-small Cell Lung Cancer
Yaya YU ; Chenjing LEI ; Zhenzhen XIAO ; Qi MO ; Changju MA ; Lina DING ; Yadong CHEN ; Yanjuan ZHU ; Haibo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):106-115
ObjectiveTo investigate the effects of Scutellariae Radix combined with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) on cell proliferation, apoptosis, cancer stem cell (CSC) marker expression, and metabolism in non-small cell lung cancer (NSCLC) cells. MethodsThe anti-tumor effects of Scutellariae Radix and EGFR-TKIs (gefitinib or osimertinib) in NSCLC cells were evaluated using the cell counting kit-8 (CCK-8) and Annexin V-FITC/propidium iodide (PI) double staining apoptosis assay. The activity of Scutellariae Radix and EGFR-TKIs in three-dimensional (3D) cultures of NSCLC cells was assessed using the CellTiter-Glo® 3D cell viability assay. The mRNA and protein expression levels of CSC markers, sex determining region y box protein 2 (SOX2) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1), were detected by quantitative real-time polymerase chain reaction (Real-time PCR) and Western blot, respectively. Changes in intracellular reactive oxygen species (ROS) levels were detected by ROS staining, and the redox ratio was detected by femtosecond laser labeling free imaging (FLI). ResultsUnder both two-dimensional (2D) and 3D culture conditions, compared with the blank group and EGFR-TKI group, the combination group showed significantly reduced cell viability and increased apoptosis rate (P<0.05). Compared with the EGFR-TKI group, the mRNA and protein levels of CSC markers were significantly downregulated in the combination group (P<0.05). Additionally, the redox ratio was significantly elevated (P<0.05), and ROS levels were also increased in the combination group compared with the EGFR-TKI group. ConclusionIn NSCLC cells, Scutellariae Radix enhances the redox ratio and increases ROS levels, thereby inhibiting the expression of CSC markers and strengthening the anti-tumor effects of EGFR-TKIs. This provides a novel molecular mechanism by which Scutellariae Radix may enhance the sensitivity of targeted therapies.
4.IMM-H007 promotes hepatic cholesterol and triglyceride metabolism by activating AMPKα to attenuate hypercholesterolemia.
Jiaqi LI ; Mingchao WANG ; Kai QU ; Yuyao SUN ; Zequn YIN ; Na DONG ; Xin SUN ; Yitong XU ; Liang CHEN ; Shuang ZHANG ; Xunde XIAN ; Suowen XU ; Likun MA ; Yajun DUAN ; Haibo ZHU
Acta Pharmaceutica Sinica B 2025;15(8):4047-4063
Hypercholesterolemia is a significant risk factor for the development of atherosclerosis. 2',3',5'-Tri-O-acetyl-N 6-(3-hydroxyphenyl) adenosine (IMM-H007), a novel AMPK agonist, has shown protective effects in metabolic diseases. However, its impact on cholesterol and triglyceride metabolism in hypercholesterolemia remains unclear. In this study, we aimed to elucidate the effects and specific mechanisms by which IMM-H007 regulates cholesterol and triglyceride metabolism. To achieve this goal, we used Apoe -/- and Ldlr -/- mice to establish a hypercholesterolemia/atherosclerosis model. Additionally, hepatocyte-specific Ampka1/2 knockout mice were subjected to a 5-week high-cholesterol diet to establish hypercholesterolemia, while atherosclerosis was induced via AAV-PCSK9 injection combined with a 16-week high-cholesterol diet. Our results demonstrated that IMM-H007 improved cholesterol and triglyceride metabolism in mice with hypercholesterolemia. Mechanistically, IMM-H007 modulated the AMPKα1/2-LDLR signaling pathway, increasing cholesterol uptake in the liver. Furthermore, IMM-H007 activated the AMPKα1-FXR pathway, promoting the conversion of hepatic cholesterol to bile acids. Additionally, IMM-H007 prevented hepatic steatosis by activating the AMPKα1/2-ATGL pathway. In conclusion, our study suggests that IMM-H007 is a promising therapeutic agent for improving hypercholesterolemia and atherosclerosis through the activation of AMPKα.
5.Evidence that metformin promotes fibrosis resolution via activating alveolar epithelial stem cells and FGFR2b signaling.
Yuqing LV ; Yanxia ZHANG ; Xueli GUO ; Baiqi HE ; Haibo XU ; Ming XU ; Lihui ZOU ; Handeng LYU ; Jin WU ; Pingping ZENG ; Saverio BELLUSCI ; Xuru JIN ; Chengshui CHEN ; Young-Chang CHO ; Xiaokun LI ; Jin-San ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4711-4729
Idiopathic pulmonary fibrosis (IPF) is a progressive disease lacking effective therapy. Metformin, an antidiabetic medication, has shown promising therapeutic properties in preclinical fibrosis models; however, its precise cellular targets and associated mechanisms in fibrosis resolution remain incompletely defined. Most research on metformin's effects has focused on mesenchymal and inflammatory responses with limited attention to epithelial cells. In this study, we utilized Sftpc lineage-traced and Fgfr2b conditional knockout mice, along with BMP2/PPARγ and AMPK inhibitors, to explore metformin's impact on alveolar epithelial cells in a bleomycin-induced pulmonary fibrosis model and cell culture. We found that metformin increased the proliferation and differentiation of alveolar type 2 (AT2) cells, particularly the recently identified injury-activated alveolar progenitors (IAAPs)-a subpopulation characterized by low SFTPC expression but enriched for PD-L1. Single-cell RNA sequencing revealed a reduction in apoptosis among mature AT2 cells. Interestingly, metformin's therapeutic effects were not significantly affected by BMP2 or PPARγ inhibition, which blocked the lipogenic differentiation of myofibroblasts. However, Fgfr2b deletion in Sftpc lineage cells significantly impaired metformin's ability to promote fibrosis resolution, a process linked to AMPK signaling. In conclusion, metformin alleviates fibrosis by directly activating AT2 cells, especially the IAAPs, through a mechanism that involves AMPK and FGFR2b signaling, but is largely independent of BMP2/PPARγ pathways.
6.The toxic components, toxicological mechanism and effective antidote for Gelsemium elegans poisoning.
Niping LI ; Yaorong YANG ; Shengyuan ZHANG ; Bin JIANG ; Wei ZHANG ; Haibo WANG ; Lixin CHEN ; Liwei WANG ; Yiyi LI ; Lei SHI ; Wencai YE ; Lei WANG
Acta Pharmaceutica Sinica B 2025;15(9):4872-4885
Gelsemium elegans (G. elegans) is an extremely poisonous plant that is widely distributed in southern China and southeastern Asia. G. elegans poisoning events occur frequently in southern China, and are therefore an urgent public health problem requiring multidisciplinary action. However, the toxic components and toxicological mechanisms remain unclear. Here, we describe a systematic investigation on the toxic components of G. elegans, resulting in the isolation and identification of 120 alkaloids. Based on acute toxicity screening, the structure-toxicity relationship of Gelsemium alkaloids was proposed for the first time. Moreover, gelsedine- and humantenine-type alkaloids were detected in the clinical blood sample, and were confirmed to be causative in the poisoning. The most toxic compound, gelsenicine (1), had selective inhibitory effects toward ventral respiratory group (VRG) neurons in the medulla, which is the main brain region controlling respiration in the central nervous system. Gelsenicine (1) strongly inhibited the firing of action potentials in VRG neurons through its ability to stimulate GABAA receptors, the main receptors involved in inhibitory neurotransmission. Application of GABAA receptor antagonists successively reversed action potential firing in gelsenicine (1)-treated VRG neurons. Importantly, the GABAA receptor antagonists securinine and flumazenil significantly increased the survival of poisoned animals. Our findings provide insight into the components and mechanisms of G. elegans toxicity, and should assist the development of effective emergency treatments for G. elegans poisoning.
7.Causal Relationship Between Colorectal Cancer and Common Psychiatric Disorders: A Two-sample Mendelian Randomization Study
Yuan YAO ; Mingze YANG ; Chen LI ; Haibo CHENG
Cancer Research on Prevention and Treatment 2025;52(6):496-501
Objective To elucidate the causal relationships between colorectal cancer (CRC) and prevalent psychiatric disorders through a two-sample Mendelian randomization approach. Methods Utilizing publicly available genome-wide association study data, we explored the connections between CRC and various psychiatric disorders, including depression, anxiety, bipolar disorder, and schizophrenia. We applied three statistical analyses: inverse variance weighting, MR-Egger, and median weighting. Sensitivity analyses were conducted to ensure the reliability and validity of the results. Results Inverse variance weighting analysis showed no significant links between CRC and depression (P=0.090), anxiety (P=0.099), or schizophrenia (P=0.899). Conversely, a significant inverse relationship was found with bipolar disorder (P=0.010). Conclusion No causal connection exists between CRC and the psychiatric conditions of depression, anxiety, or schizophrenia. However, CRC may have a causal association with a reduced risk of bipolar disorder, further supporting the existence of the gut-brain axis.
8.Research progress on PD-1/PD-L1 inhibitors in neoadjuvant therapy for esophageal cancer
Liji CHEN ; Hongmei MA ; Shifa ZHANG ; Kaize ZHONG ; Dongbao YANG ; Jiuhe SUN ; Hongfeng LIU ; Ru SONG ; Jishan ZHANG ; Haibo CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):714-721
Esophageal cancer is one of the malignant tumors that poses a threat to human health, with both high incidence and malignancy. Currently, surgery following neoadjuvant chemoradiotherapy is the standard treatment for locally advanced esophageal cancer; however, the long-term prognosis remains unsatisfactory. In recent years, inhibitors of programmed death protein-1 (PD-1) and its ligand (programmed death ligand-1, PD-L1) have achieved breakthrough progress in other solid tumors, and research on esophageal cancer is gradually being conducted. With the demonstration of good efficacy of PD-1/PD-L1 inhibitors in the first-line and second-line treatment of advanced unresectable esophageal cancer, their incorporation into neoadjuvant treatment regimens has become a hot topic. Therefore, this article reviews the mechanism of action of PD-1/PD-L1 inhibitors and their application in the neoadjuvant treatment of esophageal cancer.
9.Analysis of thyroid hormone levels and prevalence of thyroid abnormalities in 1152 radiation workers
Meilin CHEN ; Shuangyu YANG ; Yan ZHANG ; Haibo HUANG ; Zhi WANG ; Zhenzhong LIU ; Jianyu WANG
Chinese Journal of Radiological Health 2025;34(4):590-594
Objective To investigate the effects of low-dose ionizing radiation on the thyroid status and hormone levels of radiation workers. Methods Radiation workers who underwent occupational health examinations at a hospital in Guangzhou from 2015 to 2022 were selected as the subjects of this study. The levels of FT3, FT4 and TSH were analyzed, and the thyroid abnormality status of radiation workers in different groups were compared. Results A total of
10.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged

Result Analysis
Print
Save
E-mail