1.HerbRNomes: ushering in the post-genome era of modernizing traditional Chinese medicine research
Yu TIAN ; Hai SHANG ; Gui-bo SUN ; Wei-dong ZHANG
Acta Pharmaceutica Sinica 2025;60(2):300-313
With the completion of the "Human Genome Project" and the smooth progress of the "Herbal Genome Project", the research wave of RNAomics is gradually advancing, opening the research gateway for the modernization of traditional Chinese medicine (TCM) and initiating the post-genome era of medicinal plant RNA research. Therefore, this article proposes for the first time the concept of HerbRNomes, which involves constructing databases of medicinal plant, medicinal fungus, and medicinal animal RNA at different stages, from different origins, and in different organs. This research aims to explore the role of HerbRNA in self-genetic information transmission, functional regulation, as well as cross-species regulation functional mechanisms and key technologies. It also investigates application scenarios, providing a theoretical basis and research ideas for the resistance of TCM or medicinal plants to adversity and stress, molecular assistant breeding, and the development of small nucleic acid drugs. This article reviews recent research progress in elucidating the molecular mechanisms of the transmission and expression of genetic information, self-regulation and cross-species regulation of herbs at the RNA level, along with key technologies. It proposes a development strategy for small nucleic acid drugs based on HerbRNomes, providing theoretical support and guidance for the modernization of TCM based on HerbRNomes research.
2.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
3.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
4.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
5.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
6.Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients in Korea
Dong Hyeok CHOI ; Joonil HWANG ; Hai-Jeon YOON ; So Hyun AHN
The Ewha Medical Journal 2025;48(2):e30-
Purpose:
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region‐of‐interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning‐based quantitative analysis method that enhances diagnostic and prognostic accuracy.
Methods:
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
Results:
In a dataset of 10 patients, our method achieved an auto‐segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single‐ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole‐organ SUV analysis.
Conclusion
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning‐based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
7.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
8.Transcriptomic analysis of key genes involved in sex differences in intellectual development.
Jia-Wei ZHANG ; Xiao-Li ZHENG ; Hai-Qian ZHOU ; Zhen ZHU ; Wei HAN ; Dong-Min YIN
Acta Physiologica Sinica 2025;77(2):211-221
Intelligence encompasses various abilities, including logical reasoning, comprehension, self-awareness, learning, planning, creativity, and problem-solving. Extensive research and practical experience suggest that there are sex differences in intellectual development, with females typically maturing earlier than males. However, the key genes and molecular network mechanisms underlying these sex differences in intellectual development remain unclear. To date, Genome-Wide Association Studies (GWAS) have identified 507 genes that are significantly associated with intelligence. This study first analyzed RNA sequencing data from different stages of brain development (from BrainSpan), revealing that during the late embryonic stage, the average expression levels of intelligence-related genes are higher in males than in females, while the opposite is observed during puberty. This study further constructed interaction networks of intelligence-related genes with sex-differential expression in the brain, including the prenatal male network (HELP-M: intelligence genes with higher expression levels in prenatal males) and the pubertal female network (HELP-F: intelligence genes with higher expression levels in pubertal females). The findings indicate that the key genes in both networks are Ep300 and Ctnnb1. Specifically, Ep300 regulates the transcription of 53 genes in both HELP-M and HELP-F, while Ctnnb1 regulates the transcription of 45 genes. Ctnnb1 plays a more prominent role in HELP-M, while Ep300 is more crucial in HELP-F. Finally, this study conducted sequencing validation on rats at different developmental stages, and the results indicated that in the prefrontal cortex of female rats during adolescence, the expression levels of the intelligence genes in HELP-F, as well as key genes Ep300 and Ctnnb1, were higher than those in male rats. These genes were also involved in neurodevelopment-related biological processes. The findings reveal a sex-differentiated intelligence gene network and its key genes, which exhibit varying expression levels during the neurodevelopmental process.
Female
;
Intelligence/physiology*
;
Male
;
Sex Characteristics
;
Animals
;
Brain/growth & development*
;
E1A-Associated p300 Protein/physiology*
;
beta Catenin/physiology*
;
Transcriptome
;
Rats
;
Gene Expression Profiling
;
Genome-Wide Association Study
9.Analysis and application thinking of standards for 500 kinds of traditional Chinese medicine formula granules on base of industrial practice.
Yong LIU ; Jun ZHANG ; Xin-Hai DONG ; Lin ZHOU ; Dong-Mei SUN ; Fu-Lin MAO ; Zhen-Yu LI ; Lei HUANG ; Jin-Lai LIU
China Journal of Chinese Materia Medica 2025;50(5):1427-1436
Following the release of the Technical Requirements on Quality Control and Standard Establishment of Traditional Chinese Medicine Formula Granules by the National Medical Products Administration in 2021, Chinese Pharmacopoeia Commission has promulgated 296 national drug standards so far, and most provinces have started the work of establishing provincial standards as supplements. The promulgation of standards fostered high-quality development of the industry. Since the implementation of national and provincial standards for more than three years, enterprises have gained deep understanding and hands-on experiences on the characteristics, technical requirements, production process, and quality control of traditional Chinese medicine(TCM) formula granules. Meanwhile, challenges have emerged restricting the high-quality development of this industry, including how to formulate quality control strategies for medicinal materials and decoction pieces, how to reduce manufacturing costs, and how to improve the pass rate and product stability under high standards. Based on the work experiences from standard management and process research, this article analyzed the distribution of sources, processing methods, dry extract rate ranges, process requirements for volatile oil-containing decoction pieces, control measures of safety indices, characteristics and trends of setting characteristic chromatograms or fingerprints, characteristics and trends of setting content ranges, and main differences between national standards and provincial standards. On the one hand, this article aims to present main characteristics for deeply understanding different indicators in standards and provide basic ideas for establishing quality and process control systems. On the other hand, from the perspective of industrial practice, suggestions are put forward on the important aspects that need to be focused on in the quality and process control of TCM formula granules.
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
China
;
Drug Industry/standards*
10.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*

Result Analysis
Print
Save
E-mail