1.LIU Fengbin's Experience in Treating Autoimmune Liver Disease with the Method of Nourishing Yin and Removing Stasis Based on Stage
Xiling YANG ; Qiuhong YONG ; Chaoyuan HUANG ; Lina ZHAO ; Yiyuan ZHENG ; Chong PENG ; Kunhai ZHUANG ;
Journal of Traditional Chinese Medicine 2025;66(7):674-679
This paper summarizes Professor LIU Fengbin's clinical experience in treating autoimmune liver disease (AILD) using the method of nourishing yin and removing stasis based on stage differentiation. He believes that the pathogenesis of AILD generally involves both deficiency in essence and excess in manifestation, with essence deficiency often presenting as liver and kidney yin deficiency, which may progress to spleen deficiency and yang deficiency over time. The excess manifestation commonly includes qi stagnation, blood stasis, damp-heat, and phlegm toxicity. Clinically, he advocates for the treatment principle of nourishing yin and removing stasis. On the foundation of nourishing liver and kidney yin, different pathological factors causing stasis are eliminated according to their nature. Treatment is also tailored to different stages of AILD. In the early and asymptomatic stages, liver qi stagnation and spleen deficiency are prominent, warranting a therapeutic approach of soothing the liver, regulating qi and strengthening the spleen. The modified Chaishao Qizhi Decoction (柴芍气滞汤) is used. During the symptomatic stage, pathogenic factors become more pronounced, often accompanied by a significant deficiency of vital qi, with damp-heat, water retention, and phlegm toxicity as key pathological features. The treatment should focus on strengthening the spleen and dispelling dampness, using modified Sijunzi Decoction (四君子汤) combined with Yinchen Wuling Powder (茵陈五苓散). In the liver function decompensation stage, vital qi is severely deficient while pathogenic factors persist, with damp-heat, phlegm toxicity, and blood stasis obstructing the liver collaterals. Treatment should focus on nourishing blood, softening the liver, strengthening the spleen, and resolving stasis, using the modified Ruangan Yangxue Decoction (软肝养血汤). Throughout the treatment process, emphasis is placed on tonifying the liver and kidneys while protecting yin fluids.
2.Research progress on molecular mechanism of resistance training-induced skeletal muscle hypertrophy: the crucial role of mTOR signaling.
Acta Physiologica Sinica 2025;77(3):573-586
Resistance training promotes protein synthesis and hypertrophy, enhancing strength of skeletal muscle through the activation of the mammalian target of rapamycin (mTOR) and the subsequent increases of ribosome biogenesis and translation capacity. Recent studies indicate that resistance training has positive effects on physical fitness and illness treatment, yet the mechanisms underlying hypertrophic adaptation remain insufficiently understood. Human studies focused on the correlation between mTOR signals and hypertrophy-related protein production, while animal research demonstrated that mTOR complex 1 (mTORC1) is the main regulator of resistance training induced-hypertrophy. A number of upstream factors of mTORC1 have been identified, while the downstream mechanisms involved in the resistance training induced-hypertrophy are rarely studied. mTORC1 regulates the activation of satellite cells, which fuse with pre-existing fibers and contribute to hypertrophic response to resistance training. This article reviews the research progress on the mechanism of skeletal muscle hypertrophy caused by resistance training, analyzes the role of mTOR-related signals in the adaptation of skeletal muscle hypertrophy, and aims to provide a basis for basic research on muscle improvements through resistance training.
TOR Serine-Threonine Kinases/physiology*
;
Resistance Training
;
Humans
;
Signal Transduction/physiology*
;
Muscle, Skeletal/physiology*
;
Hypertrophy
;
Animals
;
Mechanistic Target of Rapamycin Complex 1
3.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
4.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
5.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
6.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
7.Efficacy and safety of stem cell therapy for erectile dysfunction: A systematic review and Meta-analysis.
Ming-Hui HUANG ; Jia-Yu ZHAO ; Xue-Jun SHANG ; Yong-Jun LIU
National Journal of Andrology 2025;31(6):535-546
OBJECTIVE:
To assess the safety, efficacy and potential impact of stem cell therapy (SCT) in improving erectile dysfunction (ED).
METHODS:
A comprehensive search strategy was used to search the literatures on safety and efficacy evaluation of stem cell (SC) in the treatment of ED by human clinical trials from PubMed, Embase and Web of science databases with a search time frame from database creation to July 4, 2024. The exclusion criteria were as follows: reviews, conference abstracts, animal experiments, and duplicate sample literature.
RESULTS:
The study initially screened 1 773 papers, and 17 were included in the final analysis. These studies involved a total of 269 ED patients, and a variety of sources of stem cells had been used in the treatment of ED, including adipose-derived stem cells, bone marrow-derived stem cells, placental stroma-derived stem cells, umbilical cord-derived stem cells, dental pulp-derived stem cells, and oral mucosa-derived stem cells. All studies were conducted by injecting stem cells into the cavernous body of the penis, but there is no fixed standard for the amount of injection, injection site and number of injections. The optimal treatment mode was still being explored. Patients' International Index of Erectile Function (IIEF) scores and Erection Hardness Score (EHS), peak systolic velocity (PSV), and end diastolic velocity (EDV) improved after treatment. But some studies showed that the efficacy of the treatment diminished with increasing time. No serious adverse effects were reported in any of the studies and none of the adverse effects persisted for a long period of time. The most common adverse effects included injection site reactions, and SCT showed a good safety and tolerability profile.
CONCLUSION
SCT has the potential to be a promising and innovative regenerative therapy option for ED patients. In the future, with the advancement of stem cell technology, larger randomized controlled studies should continue to be conducted to explore standardized treatments, so as to further evaluate the long-term efficacy and safety of SCT for ED.
Humans
;
Erectile Dysfunction/therapy*
;
Male
;
Stem Cell Transplantation/adverse effects*
;
Treatment Outcome
;
Stem Cells
8.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
9.Safety, dosimetry, and efficacy of an optimized long-acting somatostatin analog for peptide receptor radionuclide therapy in metastatic neuroendocrine tumors: From preclinical testing to first-in-human study.
Wei GUO ; Xuejun WEN ; Yuhang CHEN ; Tianzhi ZHAO ; Jia LIU ; Yucen TAO ; Hao FU ; Hongjian WANG ; Weizhi XU ; Yizhen PANG ; Liang ZHAO ; Jingxiong HUANG ; Pengfei XU ; Zhide GUO ; Weibing MIAO ; Jingjing ZHANG ; Xiaoyuan CHEN ; Haojun CHEN
Acta Pharmaceutica Sinica B 2025;15(2):707-721
Peptide receptor radionuclide therapy (PRRT) with radiolabeled SSTR2 agonists is a treatment option that is highly effective in controlling metastatic and progressive neuroendocrine tumors (NETs). Previous studies have shown that an SSTR2 agonist combined with albumin binding moiety Evans blue (denoted as 177Lu-EB-TATE) is characterized by a higher tumor uptake and residence time in preclinical models and in patients with metastatic NETs. This study aimed to enhance the in vivo stability, pharmacokinetics, and pharmacodynamics of 177Lu-EB-TATE by replacing the maleimide-thiol group with a polyethylene glycol chain, resulting in a novel EB conjugated SSTR2-targeting radiopharmaceutical, 177Lu-LNC1010, for PRRT. In preclinical studies, 177Lu-LNC1010 exhibited good stability and SSTR2-binding affinity in AR42J tumor cells and enhanced uptake and prolonged retention in AR42J tumor xenografts. Thereafter, we presented the first-in-human dose escalation study of 177Lu-LNC1010 in patients with advanced/metastatic NETs. 177Lu-LNC1010 was well-tolerated by all patients, with minor adverse effects, and exhibited significant uptake and prolonged retention in tumor lesions, with higher tumor radiation doses than those of 177Lu-EB-TATE. Preliminary PRRT efficacy results showed an 83% disease control rate and a 42% overall response rate after two 177Lu-LNC1010 treatment cycles. These encouraging findings warrant further investigations through multicenter, prospective, and randomized controlled trials.
10.Erratum: Author correction to "Generation of αGal-enhanced bifunctional tumor vaccine" Acta Pharm Sin B 12 (2022) 3177-3186.
Jian HE ; Yu HUO ; Zhikun ZHANG ; Yiqun LUO ; Xiuli LIU ; Qiaoying CHEN ; Pan WU ; Wei SHI ; Tao WU ; Chao TANG ; Huixue WANG ; Lan LI ; Xiyu LIU ; Yong HUANG ; Yongxiang ZHAO ; Lu GAN ; Bing WANG ; Liping ZHONG
Acta Pharmaceutica Sinica B 2025;15(2):1207-1207
[This corrects the article DOI: 10.1016/j.apsb.2022.03.002.].

Result Analysis
Print
Save
E-mail