1.Drofenine as a Kv2.1 inhibitor alleviated AD-like pathology in mice through Aβ/Kv2.1/microglial NLRP3/neuronal Tau axis.
Jian LU ; Qian ZHOU ; Danyang ZHU ; Hongkuan SONG ; Guojia XIE ; Xuejian ZHAO ; Yujie HUANG ; Peng CAO ; Jiaying WANG ; Xu SHEN
Acta Pharmaceutica Sinica B 2025;15(1):371-391
Alzheimer's disease (AD) is a neurodegenerative disease with clinical hallmarks of progressive cognitive impairment. Synergistic effects of the Aβ-Tau cascade reaction are tightly implicated in AD pathology, and microglial NLRP3 inflammasome activation drives neuronal tauopathy. However, the underlying mechanism of how Aβ mediates NLRP3 inflammasome remains unclear. Herein, we determined that oligomeric Aβ (o-Aβ) bound to microglial Kv2.1 and promoted Kv2.1-dependent potassium efflux to activate NLRP3 inflammasome resulting in neuronal tauopathy by using Kv2.1 inhibitor drofenine (Dfe) as a probe. The underlying mechanism has been intensively investigated by assays with Kv2.1 knockdown in vitro (si-Kv2.1) and in vivo (AAV-ePHP-si-Kv2.1). Dfe deprived o-Aβ of its capability to promote microglial NLRP3 inflammasome activation and neuronal Tau hyperphosphorylation by inhibiting the Kv2.1/JNK/NF-κB pathway while improving the cognitive impairment of 5×FAD-AD model mice. Our results have highly addressed that the Kv2.1 channel is required for o-Aβ-driven microglial NLRP3 inflammasome activation and neuronal tauopathy in AD model mice and highlighted that Dfe as a Kv2.1 inhibitor shows potential in the treatment of AD.
2.NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition.
Yijian GAO ; Yachao ZHANG ; Yujie MA ; Xiliang LI ; Yu WANG ; Huan CHEN ; Yingpeng WAN ; Zhongming HUANG ; Weimin LIU ; Pengfei WANG ; Lidai WANG ; Chun-Sing LEE ; Shengliang LI
Acta Pharmaceutica Sinica B 2025;15(2):1159-1170
High-performance phototheranostics with combined photothermal therapy and photoacoustic imaging have been considered promising approaches for efficient cancer diagnosis and treatment. However, developing phototheranostic materials with efficient photothermal conversion efficiency (PCE), especially over the second near-infrared window (NIR-II, 1000-1700 nm), remains challenging. Herein, we report an ultraefficient NIR-II-activated nanomedicine with phototheranostic and vaccination capability for highly efficient in vivo tumor elimination and metastasis inhibition. The NIR-II nanomedicine of a semiconducting biradical oligomer with a motor-flexible design was demonstrated with a record-breaking PCE of 87% upon NIR-II excitation. This nanomedicine inherently features extraordinary photothermal stability, good biocompatibility, and excellent photoacoustic performance, contributing to high-contrast photoacoustic imaging in living mice and high-performance photothermal elimination of tumors. Moreover, a whole-cell vaccine based on a NIR-II nanomedicine with NIR-II-activated performance was further designed to remotely activate the antitumor immunologic memory and effectively inhibit tumor occurrence and metastasis in vivo, with good biosafety. Thus, this work paves a new avenue for designing NIR-II active semiconducting biradical materials as a promising theranostics platform and further promotes the development of NIR-II nanomedicine for personalized cancer treatment.
3.Celastrol-loaded ginsenoside Rg3 liposomes boost immunotherapy by remodeling obesity-related immunosuppressive tumor microenvironment in melanoma.
Hongyan ZHANG ; Jingyi HUANG ; Yujie LI ; Wanyu JIN ; Jiale WEI ; Ninghui MA ; Limei SHEN ; Mancang GU ; Chaofeng MU ; Donghang XU ; Yang XIONG
Acta Pharmaceutica Sinica B 2025;15(5):2687-2702
Obesity usually exacerbates the immunosuppressive tumor microenvironment (ITME), hindering CD8+ T cell infiltration and function, which further represents a significant barrier to the efficacy of immunotherapy. Herein, a multifunctional liposomal system (CR-Lip) for encapsulating celastrol (CEL) was utilized to remodel obesity-related ITME and improve cancer immunotherapy, wherein Ginsenoside Rg3 (Rg3) was detected interspersed in the phospholipid bilayer and its glycosyl exposed on the surface of the liposome. CR-Lip had a relatively uniform size (116.5 nm), facilitating favorable tumor tissue accumulation through the interaction between Rg3 and glucose transporter 1 overexpressed in obese tumor cells. Upon reaching the tumor region, CR-Lip was found to induce the immunogenic cell death (ICD) of HFD tumor cells. Notably, the level of PHD3 in HFD tumor cells was effectively boosted by CR-Lip to effectively block metabolic reprogramming and increase the availability of major free fatty acids fuel sources. In vivo, experiments studies revealed that the easy-obtained nano platform stimulated enhanced the production of various cytokines in tumor tissues, DC maturation, CD8+ T-cell infiltration, and synergistic anticancer therapeutic potency with aPD-1 (tumor inhibition rate = 82.1%) towards obesity-related melanoma. Consequently, this study presented an efficacious approach to tumor immunotherapy in obese mice by encompassing tumor eradication, inducing ICD, and reprogramming metabolism. Furthermore, it offered a unique insight into a valuable attempt at the immunotherapy of obesity-associated related tumors.
4.A cisplatin prodrug-based self-assembling ozone delivery nanosystem sensitizes radiotherapy in triple-negative breast cancer.
Tianyue XU ; Dan ZHENG ; Meixu CHEN ; Linlin SONG ; Zhihui LIU ; Yan CHENG ; Yujie ZHAO ; Liwen HUANG ; Yixuan LI ; Zhankun YANG ; Cong LI ; Biao DONG ; Jing JING ; Hubing SHI
Acta Pharmaceutica Sinica B 2025;15(5):2703-2722
Lacking therapeutic targets highlights the crucial roles of chemotherapy and radiotherapy in the clinical management of triple-negative breast cancer (TNBC). To relieve the side effects of the chemoradiotherapy combination regimen, we design and develop a self-assembled micelle nanosystem consisting of perfluorocarbon chain-modified cisplatin prodrug. By incorporating perfluorodecalin, this nanosystem can effectively carry ozone and promote irradiation-derived reactive oxygen species (ROS) production. By leveraging the perfluorocarbon sidechain, the nanosystem exhibits efficient internalization by TNBC cells and effectively escapes from lysosomal entrapment. Under X-ray irradiation, ozone-generated ROS disrupts the intracellular redox balance, thereby facilitating the release of cisplatin in a reduction-responsive manner mediated by reduced glutathione. Moreover, oxygen derived from ozone decomposition enhances the efficacy of radiotherapy by alleviating tumor hypoxia. Notably, the combination of irradiation with ozone-loaded cisplatin prodrug nano system synergistically prompts antitumor efficacy and reduces cellular/systemic toxicity in vitro and in vivo. Furthermore, the combo regimen remodels the tumor microenvironment into an immune-favored state by triggering immunogenic cell death and relieving hypoxia, which provides a promising foundation for a combination regimen of immunotherapy. In conclusion, our nanosystem presents a novel strategy for integrating chemotherapy and radiotherapy to optimize the efficacy and safety of TNBC clinical treatment.
5.Corrigendum to "Hydralazine represses Fpn ubiquitination to rescue injured neurons via competitive binding to UBA52" J. Pharm. Anal. 14 (2024) 86-99.
Shengyou LI ; Xue GAO ; Yi ZHENG ; Yujie YANG ; Jianbo GAO ; Dan GENG ; Lingli GUO ; Teng MA ; Yiming HAO ; Bin WEI ; Liangliang HUANG ; Yitao WEI ; Bing XIA ; Zhuojing LUO ; Jinghui HUANG
Journal of Pharmaceutical Analysis 2025;15(4):101324-101324
[This corrects the article DOI: 10.1016/j.jpha.2023.08.006.].
6.Machine learning-assisted microfluidic approach for broad-spectrum liposome size control.
Yujie JIA ; Xiao LIANG ; Li ZHANG ; Jun ZHANG ; Hajra ZAFAR ; Shan HUANG ; Yi SHI ; Jian CHEN ; Qi SHEN
Journal of Pharmaceutical Analysis 2025;15(6):101221-101221
Liposomes serve as critical carriers for drugs and vaccines, with their biological effects influenced by their size. The microfluidic method, renowned for its precise control, reproducibility, and scalability, has been widely employed for liposome preparation. Although some studies have explored factors affecting liposomal size in microfluidic processes, most focus on small-sized liposomes, predominantly through experimental data analysis. However, the production of larger liposomes, which are equally significant, remains underexplored. In this work, we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning (ML) model capable of accurately predicting liposomal size. Experimental validation was conducted using a staggered herringbone micromixer (SHM) chip. Our findings reveal that most investigated variables significantly influence liposomal size, often interrelating in complex ways. We evaluated the predictive performance of several widely-used ML algorithms, including ensemble methods, through cross-validation (CV) for both liposome size and polydispersity index (PDI). A standalone dataset was experimentally validated to assess the accuracy of the ML predictions, with results indicating that ensemble algorithms provided the most reliable predictions. Specifically, gradient boosting was selected for size prediction, while random forest was employed for PDI prediction. We successfully produced uniform large (600 nm) and small (100 nm) liposomes using the optimised experimental conditions derived from the ML models. In conclusion, this study presents a robust methodology that enables precise control over liposome size distribution, offering valuable insights for medicinal research applications.
7.Pituitary Crooke cell neuroendocrine tumor of adrenocorticotropic hormone differentiation-specific transcription factor lineage: a clinicopathological analysis of six cases
Chong GE ; Qi WANG ; Wu WANG ; Lanqing CHENG ; Yue′e WANG ; Liangliang HUANG ; Yujie LI ; Haibo WU ; Anli ZHANG
Chinese Journal of Pathology 2024;53(7):722-727
Objective:To investigate the clinicopathological features of Crooke cell tumor of adrenocorticotropic hormone differentiation specific transcription factor (TPIT, also known as transcription factor 19, TBX19) lineage neuroendocrine tumors.Methods:Six cases of Crooke cell tumor diagnosed at the First Affiliated Hospital of University of Science and Technology of China, Hefei, China from October 2019 to October 2023 were collected. The clinical and pathological features of these cases were analyzed.Results:Among the six cases, one was male and five were female, with ages ranging from 26 to 75 years, and an average age of 44 years. All tumors occurred within the sella turcica. Clinical presentations included visual impairment in two cases, menstrual disorders in one case, Cushing′s syndrome in one case, headache in one case, and one asymptomatic case discovered during a physical examination. Preoperative serum analyses revealed elevated levels of cortisol and adrenocorticotropic hormones in two cases, elevated cortisol in two cases, elevated adrenocorticotropic hormone in one case, and one case with a mild increase in prolactin due to the pituitary stalk effect. Magnetic resonance imaging revealed uneven enhancement of masses with maximum diameters ranging from 1.7 to 3.2 cm, all identified as macroadenomas. Microscopically, tumor cells exhibited irregular polygonal shapes, solid sheets, or pseudo-papillary arrangements around blood vessels. The cell nuclei were eccentric or centrally located, varying in size, with abundant cytoplasm. Some tumor cells showed perinuclear halo. Immunohistochemistry demonstrated diffuse strong positivity for TPIT in five cases, focal weak positivity for TPIT in one case, diffuse strong positivity for adrenocorticotropic hormone in all cases, and faint staining around the nuclei in a few cells. CK8/18 showed a strong positive ring pattern in more than 50% of tumor cells, focal weak positive expression of p53, and the Ki-67 positive index ranged 1%-5%. Periodic acid-Schiff staining revealed positive cytoplasm and negative perinuclear areas.Conclusions:Crooke cell tumor is a rare type of pituitary neuroendocrine tumors. Its pathological characteristics include a distinctive perinuclear clear zone and immunohistochemical markers, such as CK8/18 exhibiting a ring or halo pattern. This entity represents a high-risk subtype among pituitary neuroendocrine tumors, displaying a high risk of invasion and a propensity for recurrence. Accurate diagnosis is crucial for the postoperative follow-up and multimodal treatment planning.
8.Research Progress on Factors Affecting the Blood Concentration of Hydroxychloroquine
Xuan HUANG ; Han XIE ; Weihong GE ; Yujie ZHOU
Herald of Medicine 2024;43(2):215-220
Originally used as an antimalarial drug,hydroxychloroquine is now widely used in the treatment of rheumatic immune diseases due to its cost-effectiveness,safety,and efficacy.In addition to its immunomodulatory effects,hydroxychloroquine also exhibits anti thrombotic,anti-hypolipidemic,and anti-hypoglycemic properties.Hydroxychloroquine blood levels are correlated with clinical outcomes and adverse reactions,and can reflect patient compliance.However,due to the complex pharmacokinetic profile of hydroxychloroquine,significant inter-individual differences in blood concentration exist even with the administration of the same dosage.This study investigates the factors affecting the blood concentration of hydroxychloroquine in terms of physiological factors,pathological factors,metabolic enzyme gene polymorphisms,and drug-related factors.The aim is to provide a reference for rational clinical use and the development of individualized dosing.
9.Research on the association between the DYS570 microvariant and Y-SNP haplogroup in Kunming
Lei HUANG ; Guangsen YANG ; Yujie FAN ; Xueyun CHEN ; Zhu YANG ; Wei WANG ; Wei HE ; Dian ZHAI ; Jun DENG ; Yiyan ZHANG ; Baowen CHENG
Chinese Journal of Forensic Medicine 2024;39(1):82-87
Objective To investigate the association between microvariants at locus DYS570 and Y-SNPs haplogroup.Methods 89 Y-SNPs and 34 Y-STRs in AIYSNP42,AIYSNP47 and YfilerTM Platinum kits were used to detect the genotype of 116 microvariants at locus DYS570 in Kunming,and the Set-B kit was used to detect the core repeat sequences of the DYS570 locus.The data were statistically analyzed by direct counting method.Then,a network map was drawn by Network 10.2,in order to visualize the genetic information of the sample.Results The results demonstrated that 111 DYS570/18.3-21.3 samples had a core repeat sequence of TTT[TITC]18-21,belonging to subgroup O2a2b1a1a1a4-F14494.A DYS570/20.3 sample had a core repeat sequence of[TTTC]15TTC[TTTC]5,belonging to O2a1b1a1a1a1e-F1365 subgroup.A DYS570/17.1 sample had a core repeat sequence of[TTTC]17 T,belonging to the O2a1b1a1a1a-F11 subgroup.Three DYS570(19.2)samples had[TTTC]3 TT[TTTC]16,belonging to the D1a1a-M15 haplogroup.Conclusion The results indicated that the microvariant with the same core repeat structure at locus DYS570 was associated with haplogroups,and the ancestry origin of samples can be inferenced from microvariant characteristics during the practice of forensic medicine.
10.Influencing factors of survival of patients with airway stenosis requiring clinical interventions after lung transplantation
Lingzhi SHI ; Heng HUANG ; Mingzhao LIU ; Hang YANG ; Bo WU ; Jin ZHAO ; Haoji YAN ; Yujie ZUO ; Xinyue ZHANG ; Linxi LIU ; Dong TIAN ; Jingyu CHEN
Organ Transplantation 2024;15(2):236-243
Objective To analyze the influencing factors of survival of patients with airway stenosis requiring clinical interventions after lung transplantation. Methods Clinical data of 66 patients with airway stenosis requiring clinical interventions after lung transplantation were retrospectively analyzed. Univariate and multivariate Cox’s regression models were adopted to analyze the influencing factors of survival of all patients with airway stenosis and those with early airway stenosis. Kaplan-Meier method was used to calculate the overall survival and delineate the survival curve. Results For 66 patients with airway stenosis, the median airway stenosis-free time was 72 (52,102) d, 27% (18/66) for central airway stenosis and 73% (48/66) for distal airway stenosis. Postoperative mechanical ventilation time [hazard ratio (HR) 1.037, 95% confidence interval (CI) 1.005-1.070, P=0.024] and type of surgery (HR 0.400, 95%CI 0.177-0.903, P=0.027) were correlated with the survival of patients with airway stenosis after lung transplantation. The longer the postoperative mechanical ventilation time, the higher the risk of mortality of the recipients. The overall survival of airway stenosis recipients undergoing bilateral lung transplantation was better than that of their counterparts after single lung transplantation. Subgroup analysis showed that grade 3 primary graft dysfunction (PGD) (HR 4.577, 95%CI 1.439-14.555, P=0.010) and immunosuppressive drugs (HR 0.079, 95%CI 0.022-0.287, P<0.001) were associated with the survival of patients with early airway stenosis after lung transplantation. The overall survival of patients with early airway stenosis after lung transplantation without grade 3 PGD was better compared with that of those with grade 3 PGD. The overall survival of patients with early airway stenosis after lung transplantation treated with tacrolimus was superior to that of their counterparts treated with cyclosporine. Conclusions Long postoperative mechanical ventilation time, single lung transplantation, grade 3 PGD and use of cyclosporine may affect the survival of patients with airway stenosis after lung transplantation.

Result Analysis
Print
Save
E-mail