1.Factors affecting Alzheimer's disease among the elderly
XIAO Sa ; LI Lian ; ZHOU Dongsheng ; ZHOU Ying ; YANG Hongying ; YUAN Yuerong ; BIAN Guolin
Journal of Preventive Medicine 2025;37(11):1165-1169
Objective:
To investigate the Alzheimer's disease (AD) influencing factors among the elderly, so as to provide a basis for early prevention and intervention.
Methods:
From March to June 2024, participants aged 60 years and above from a sub-district in Haishu District, Ningbo City, Zhejiang Province were selected using a convenience sampling method. Data on demographics, lifestyle, and health status were collected through questionnaire surveys. Depressive symptoms were evaluated using the short-form Geriatric Depression Scale. The Chinese Mini-Mental State Examination (MMSE) was used for the initial screening of AD, and individuals who screened positive were further diagnosed by psychiatrists. Factors affecting AD among the elderly were analyzed using a multivariable logistic regression model.
Results:
A total of 3 644 individuals were surveyed, comprising 1 526 males (41.88%) and 2 118 females (58.12%). The mean age was (71.85±7.44) years. AD was detected in 200 cases, with a detection rate of 5.49%. Multivariable logistic regression analysis showed that individuals aged ≥65 years (65-<70 years, OR=3.012, 95%CI: 1.007-9.012; 70-<75 years, OR=3.131, 95%CI: 1.059-9.260; 75-<80 years, OR=5.779, 95%CI: 1.989-16.784; ≥80 years, OR=16.810, 95%CI: 5.926-47.685), those who were unmarried, divorced, or widowed (OR=1.973, 95%CI: 1.383-2.815), those with hearing loss (OR=1.573, 95%CI: 1.128-2.193), those with diabetes mellitus (OR=1.958, 95%CI: 1.362-2.814), and those with depressive symptoms (OR=4.143, 95%CI: 2.997-5.728) had a higher risk of AD. Conversely, individuals with an educational level of primary school or above (primary school, OR=0.579, 95%CI: 0.401-0.835; junior high school or above, OR=0.438, 95%CI: 0.259-0.741), and those who engaged in regular physical exercise (OR=0.414, 95%CI: 0.264-0.649) had a lower risk of AD.
Conclusions
The detection rate of AD was relatively high among the elderly in Haishu District. AD among the elderly was related to age, educational level, marital status, physical exercise, hearing loss, diabetes mellitus, and depressive symptoms.
2.ALKBH3-regulated m1A of ALDOA potentiates glycolysis and doxorubicin resistance of triple negative breast cancer cells.
Yuhua DENG ; Zhiyan CHEN ; Peixian CHEN ; Yaming XIONG ; Chuling ZHANG ; Qiuyuan WU ; Huiqi HUANG ; Shuqing YANG ; Kun ZHANG ; Tiancheng HE ; Wei LI ; Guolin YE ; Wei LUO ; Hongsheng WANG ; Dan ZHOU
Acta Pharmaceutica Sinica B 2025;15(6):3092-3106
Chemotherapy is currently the mainstay of systemic management for triple-negative breast cancer (TNBC), but chemoresistance significantly impacts patient outcomes. Our research indicates that Doxorubicin (Dox)-resistant TNBC cells exhibit increased glycolysis and ATP generation compared to their parental cells, with this metabolic shift contributing to chemoresistance. We discovered that ALKBH3, an m1A demethylase enzyme, is crucial in regulating the enhanced glycolysis in Dox-resistant TNBC cells. Knocking down ALKBH3 reduced ATP generation, glucose consumption, and lactate production, implicating its involvement in mediating glycolysis. Further investigation revealed that aldolase A (ALDOA), a key enzyme in glycolysis, is a downstream target of ALKBH3. ALKBH3 regulates ALDOA mRNA stability through m1A demethylation at the 3'-untranslated region (3'UTR). This methylation negatively affects ALDOA mRNA stability by recruiting the YTHDF2/PAN2-PAN3 complex, leading to mRNA degradation. The ALKBH3/ALDOA axis promotes Dox resistance both in vitro and in vivo. Clinical analysis demonstrated that ALKBH3 and ALDOA are upregulated in breast cancer tissues, and higher expression of these proteins is associated with reduced overall survival in TNBC patients. Our study highlights the role of the ALKBH3/ALDOA axis in contributing to Dox resistance in TNBC cells through regulation of ALDOA mRNA stability and glycolysis.
3.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
4.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
5.Influencing factors for depression and anxiety symptoms among the elderly
YANG Hongying ; LI Lian ; PAN Kaijie ; CHEN Xiang ; TANG Jianyan ; HUA Er ; ZHOU Ying ; BIAN Guolin
Journal of Preventive Medicine 2024;36(11):926-930
Objective:
To investigate the factors affecting depression and anxiety symptoms among the elderly, so as to provide the basis for promoting mental health among the elderly.
Methods:
The elderly aged 60 years and above in Ningbo City, Zhejiang Province were recruited using the multistage stratified random sampling method from June to August 2022, and demographic information, lifestyle and self-rated health status were collected by questionnaires. The symptoms of depression and anxiety were assessed by the Patient Health Questionnaire-9 (PHQ-9) and the Generalized Anxiety Disorder-7 (GAD-7), respectively. The presence of depressive and anxiety symptoms was determined when both the PHQ-9 score and the GAD-7 score were 10 points and higher. Factors affecting depressive and anxiety symptoms were identified using a multivariable logistic regression model.
Results:
A total of 7 771 individuals were surveyed, including 3 490 males (44.91%) and 4 281 females (55.09%), and had a mean age of (72.11±6.79) years. The prevalence of depression and anxiety symptoms was 2.05%. Multivariable logistic regression analysis identified residence (urban area, OR=0.316, 95%CI: 0.201-0.498), sedentary duration (<3 h/d, OR=0.349, 95%CI: 0.232-0.525; 3-5 h/d, OR=0.458, 95%CI: 0.313-0.671), physical activity (≥3 times/week, OR=0.551, 95%CI: 0.373-0.815), sleep quality (poor, OR=2.491, 95%CI: 1.738-3.571), social isolation (OR=1.688, 95%CI: 1.148-2.481) and self-rated health (poor, OR=5.857, 95%CI: 3.547-9.671; normal, OR=1.903, 95%CI: 1.234-2.937) as the influencing factors for depression and anxiety symptoms among the elderly.
Conclusion
The prevalence of depression and anxiety symptoms among the elderly is associated with residence, sedentary duration, sleep quality, physical activity, social interactions and self-rated health status.
6.Multimodal non-pharmacological interventions for Alzheimer's disease: a review
ZHOU Ying ; LI Lian ; BIAN Guolin
Journal of Preventive Medicine 2024;36(12):1045-1048,1051
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and behavioral impairments. Currently, the treatment mainly relies on pharmacotherapy, yet its effectiveness is limited and accompanied by adverse reactions. Multimodal non-pharmacological interventions (MNPI), which combine two or more non-pharmacological intervention approaches, can synergistically improve cognitive function, neuropsychiatric symptoms, activities of daily living, and quality of life in AD patients, and offers advantages of safety, cost-effectiveness and simplicity. This article reviews MNPI-related literature published domestically and internationally from 2018 to 2024, and focuses on the application of cognitive training, physical activity, and other combined intervention methods in MNPI, providing the reference for developing personalized interventions for AD.
7.Risk Factors of Multidrug Resistant Organisms Infections in ICU Patients:A Meta-analysis
Qi LI ; Rou YANG ; Xiaoyan SHEN ; Xiaoshi ZHOU ; Guolin LI ; Changji ZHANG ; Yong YANG
Herald of Medicine 2024;43(10):1562-1571
Objective For more focused prevention and management,this investigation examines the risk factors for multidrug resistant organisms(MDRO)infections in intensive care unit(ICU)patients.Methods Case-control studies and cohort studies of risk factors for MDRO infection in ICU patients were searched in the Embase,Website of Science,Cochrane Library,PubMed,CNKI,WanFang,and VIP databases from their start to October 26,2022.The Meta-analysis was carried out with RevMan 5.3.Results A total of 32 papers were included,with 10 985 cases studied,with the quality of the literature rated as moderate to high.The results of Meta-analysis of this study showed that gender[OR=1.21,95% CI=(1.08,1.36),P=0.002],ICU length of stay[WMD=5.36,95% CI=(3.99,6.73),P<0.000 01],total length of stay[WMD=8.96,95% CI=(6.51,11.41),P<0.000 01],hypertension[OR=1.33,95% CI=(1.10,1.60),P=0.003],abnormal renal function[OR=1.69,95% CI=(1.33,2.16),P<0.000 01],hypoproteinemia[OR=1.87,95% CI=(1.51,2.32),P<0.000 01],mechanical ventilation[OR=2.26,95% CI=(1.18,4.33),P=0.01],duration of mechanical ventilation[WMD=8.83,95% CI=(2.52,15.14),P=0.006],arteriovenous placement[OR=1.46,95% CI=(1.23,1.72),P<0.000 1],placement of urinary catheter[OR=1.71,95% CI=(1.25,2.36),P<0.000 01],gastrointestinal tube placement[OR=0.10,95% CI=(0.03,0.18),P=0.008],antimicrobial drug type≥3[OR=4.27,95% CI=(2.06,8.85),P<0.000 01],use of carbapenem antibiotics[OR=4.09,95% CI=(300,5.58),P<0.000 01],the use of the third-generation cephalosporin[OR=1.63,95% CI=(1.15,2.33),P=0.007],the use of quinolone antibacterials[OR=1.86,95% CI=(1.42,2.44),P<0.000 01],the use of aminoglycoside antibiotics[OR=1.99,95% CI=(1.49,2.67),P<0.000 01],use of piperacillin-tazobactam[OR=2.94,95% CI=(1.56,5.54),P=0.000 9],use of glycopeptide antibiotics[OR=3.78,95% CI=(2.48,5.78),P<0.000 01],use of sedatives[OR=3.25,95% CI=(2.06,5.14),P<0.000 01],and use of acid suppressants[OR=1.51,95% CI=(1.06,2.16),P=0.02]are risk factors for MDRO infection in ICU patients.Conclusion MDRO infections in ICU patients are associated with gender,duration of ICU stay,chronic lung disease,total length of stay,hypertension,abnormal renal function,hypoproteinemia,mechanical ventilation,duration of mechanical ventilation,arteriovenous placement,placement of urinary catheters,gastrointestinal placement,type of antimicrobial drugs≥3,use of carbapenem antibiotics,use of third-generation cephalosporin,use of quinolone antibacterials,use of aminoglycoside antibiotics,use of piperacillin-tazobactam,use of glycopeptide antibiotics,use of sedatives,use of acid suppressants,and other factors.Targeted controls of different factors such as underlying diseases,comorbidities,invasive procedures performed,and the use of antimicrobial medications and other therapeutic pharmaceuticals could limit the risk of infection in MDRO in ICU patients.
8.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
9.Regulation of AMPA receptor on propofol induced hippocampal mitochondrial injury in neonatal rats
Chenxu WANG ; Yan ZHOU ; Keliang XIE ; Yuan YUAN ; Guolin WANG ; Yonghao YU
Chinese Critical Care Medicine 2023;35(2):189-194
Objective:To investigate whether propofol can cause injury to hippocampal mitochondria in neonatal rats and the regulation of excitatory amino acid receptor AMPA receptor.Methods:Forty-eight Sprague-Dawley (SD) rats aged 7 days were randomly divided into control group, propofol group, propofol+AMPA receptor agonist AMPA group (propofol+AMPA group) and propofol+AMPA receptor inhibitor CNQX group (propofol+CNQX group), with 12 rats in each group. The rats in the propofol groups were intraperitoneally injected with 30 mg/kg propofol, while in control group with 3 mg/kg normal saline. Each group was given 1/2 of the first dose every 20 minutes after the first administration, three times a day, for three consecutive days. The rats in the propofol+AMPA group and the propofol+CNQX group were injected with 1 g/L AMPA or CNQX 5 μL through left ventricle after the first administration. Three days after administration, the rats were sacrificed to obtain brain tissue. Western blotting was used to determine the expression of AMPA receptor glutamate receptors (GluR1, GluR2) subunit totally (T) and on membrane (M) in hippocampus. The expression of dynamin-related protein-1 (DRP-1) and phosphorylated-DRP-1 (p-DRP-1) and mitofusin 2 (Mfn2) related to mitochondrial fission and fusion were determined. The adenosine triphosphate (ATP) content and ATPase activity were determined.Results:Compared with the control group, GluR1 expression and its M/T ratio were significantly increased after treatment of propofol, GluR2 expression and its M/T ratio were significantly decreased, the ATP content and ATP-related enzyme activity were decreased significantly, while the expression of DRP-1 and its phosphorylation was significantly increased, and the expression of Mfn2 was significantly decreased. The changes indicated that repeated intraperitoneal injection of 30 mg/kg propofol leading to the injury of mitochondria in neural cells. Compared with the propofol group, the GluR1 expression and its M/T ratio further increased after AMPA agonist administration [T-GluR1 protein (T-GluR1/β-actin): 2.41±0.29 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/β-actin): 1.18±0.15 vs. 0.79±0.09, M/T ratio: 0.78±0.12 vs. 0.46±0.08, all P < 0.01], GluR2 expression was significantly increased [T-GluR2 protein (T-GluR2/β-actin): 0.65±0.13 vs. 0.30±0.14, P < 0.01; M-GluR2 protein (M-GluR2/β-actin): 0.17±0.05 vs. 0.13±0.07, P > 0.05], but its M/T ratio was further decreased (0.27±0.10 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was further decreased, and the ATP content was further decreased (μmol/g: 0.32±0.07 vs. 0.70±0.10, P < 0.01). Mitochondria DRP-1 expression and its phosphorylation were further increased [DRP-1 protein (DRP-1/GAPDH): 2.75±0.36 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.99±0.14 vs. 0.76±0.15, both P < 0.05], and Mfn2 expression was further decreased (Mfn2/GAPDH: 0.23±0.12 vs. 0.54±0.12, P < 0.05). This indicated that the AMPA agonist increased the expression of the AMPA receptor GluR1 subunit on the cell membrane and shifted the GluR2 into the cell, thus increasing the mitochondrial injury caused by propofol. Compared with the propofol group, the GluR1 expression and its M/T ratio decreased significantly after AMPA inhibitor administration [T-GluR1 protein (T-GluR1/β-actin): 0.99±0.14 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/β-actin): 0.21±0.07 vs. 0.79±0.09, M/T ratio: 0.21±0.07 vs. 0.46±0.08, all P < 0.01], the change of GluR2 expression was not significant, but its M/T ratio was significantly increased (0.59±0.09 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was increased significantly, and the ATP content was increased significantly (μmol/g: 0.87±0.12 vs. 0.70±0.10, P < 0.05). Mitochondria DRP-1 expression and its phosphorylation were significantly decreased [DRP-1 protein (DRP-1/GAPDH): 1.18±0.17 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.37±0.10 vs. 0.76±0.10, both P < 0.05], and Mfn2 expression was significantly increased (Mfn2/GAPDH: 0.78±0.10 vs. 0.54±0.12, P < 0.05). This indicated that AMPA inhibitor promoted the movement to the cell membrane of GluR2 subunits meanwhile inhibited the expression of GluR1 subunits, thus alleviating the injury of mitochondrial caused by propofol in the brain. Conclusions:Repeated intraperitoneal injection of 30 mg/kg propofol for 3 days can increase the expression of GluR1 subunits of AMPA receptor in 7-day neonatal rats hippocampus mainly distributing in the cell membrane, decrease the expression of GluR2 subunits moving into the cell, thus causing injury of mitochondrial function and dynamics, which can be aggravated by AMPA receptor agonist and alleviated by AMPA receptor inhibitors.
10.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.


Result Analysis
Print
Save
E-mail