1.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
2.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
3.LIU Shangyi's Experience in Treating Pruritus Vulvae Using Self-Prescribed Yinyang Formula (阴痒方)
Xiao LIU ; Zhaozhao HUA ; Yiyuan ZHOU ; Taiwei ZHANG ; Yan LI ; Shuang HUANG ; Qiang GAO ; Kaiyang XUE ;
Journal of Traditional Chinese Medicine 2025;66(10):992-995
To summarize the clinical experience of Professor LIU Shangyi in treating pruritus vulvae. It is believed that women have the physiological characteristics of liver and kidney as the root, and their pubic area is easily attacked by wind-dampness pathogenic qi, so the core mechanism of pruritus vulvae is proposed as wind-dampness accumulation and deficiency of liver and kidney. The core treatment method is to dispel wind-dampness and nourish the liver and kidneys, and modify the Danggui Decoction (当归饮子) to form a self-prescribed Yinyang Formula (阴痒方) as the basic prescription to treat pruritus vulvaen.
4.Study on toxicity-reducing and efficacy-enhancing effects of Polygala tenuifolia compatibility on sand-ironing Strychnos nux-vomica
Yi SUI ; Guo FENG ; Gang LIU ; Keyan LIU ; Xuehao WEI ; Minggang TENG ; Wei LI ; Caiyao HAN ; Yan LEI
China Pharmacy 2025;36(10):1197-1201
OBJECTIVE To explore the effects of Polygala tenuifolia compatibility on toxicity, anti-inflammatory and analgesic efficacy of sand-ironing Strychnos nux-vomica (SS). METHODS The preparation of SS single decoction, SS-P. tenuifolia core-removed (PC) (1∶2.5) or (1∶5) combined decoction, and SS-PC (1∶5) mixture were carried out to investigate their median lethal dose (LD50). Using aspirin as positive control, the number of writhing movements, analgesic rate, pain latency, ear swelling degree and inflammation inhibition rate induced by the above-mentioned medicinal liquids in mice were compared. The contents of the active and toxic components, strychnine and brucine, in the above-mentioned medicinal liquids were also determined. RESULTS The LD50 values of SS single decoction, SS-PC (1∶2.5) combined decoction, SS-PC (1∶5) combined decoction and SS- PC (1∶5) mixture were 302.00, 614.47, 1 445.44 and 1 778.28 mg/kg, respectively. Compared with control group, the number of writhing movements and ear swelling degree in the mice of the above-mentioned medicinal liquid groups were reduced or decreased significantly (P<0.05 or P<0.01); pain latency [at 90 and 120 minutes in the SS single decoction group, at 60 and 90 minutes in the SS-PC (1∶2.5) combined decoction group, and at 60,90, 120 minutes in the SS-PC (1∶5) combined decoction group and SS-PC (1∶5) mixture group] was significantly prolonged (P<0.05 or P<0.01); analgesic rates of the respective medicinal liquids were 39.30%, 70.87%, 80.00% and 82.46%, and inflammation inhibition rates were 38.08%,TD 57.89%, 76.47% and 50.46%; analgesic and anti-inflammatory effects of combined decoction and mixture were generally better than those of the single decoction (P<0.05 or P<0.01). In the above-mentioned four medicinal liquids, the total contents of strychnine were 0.71%, 0.42%, 0.47% and 0.64%, and the total contents of brucine were 0.88%, 0.63%, 0.57% and 0.88%, respectively. CONCLUSIONS The combination of P. tenuifolia can reduce the toxicity of SS and enhance its anti-inflammatory and analgesic effects. Moreover, there is a tendency for the toxicity-reducing and efficacy-enhancing effects to increase with the increasing dosage of P. tenuifolia. Additionally, the combined decoction of SS and P. tenuifolia can reduce the contents of the active and toxic components, strychnine and brucine, in SS.
5.Diarrhea caused by foodborne Salmonella infection in children aged 0-6 years in Guizhou Province from 2016 to 2023
LIAO Hongxia, WANG Yafang, LIU Lin, ZHANG Lili, YANG Qi, LI Lei
Chinese Journal of School Health 2025;46(5):732-736
Objective:
To analyze the epidemilogical and seasonal characteristics of foodborne Salmonella-associated diarrhea among children aged 0-6 years in Guizhou Province from 2016 to 2023, so as to provide a basis for the prevention and control of foodborne diseases.
Methods:
Data were extracted from the Foodborne Disease Survellance System for cases reported between January 1, 2016, and December 31, 2023. The incidence, seasonal characteristics, and peak periods were analyzed by the method of concentration and circular distribution.
Results:
A total of 6 434 cases of diarrhea in children aged 0-6 years were collected, and 455 cases of Salmonella were detected, with a positive detection rate of 7.07%. Salmonella typhimurium was the main serotype causing diarrhea (59.34%). The peak of the disease was from May 3 to September 30, with certain seasonal characteristics. The highest detection rate was found in children aged 1-3 years (8.66%). Among food types, the positive detection rates of Salmonella were relatively high in other foods (17.39%), fruits and their products (10.22%), infant and toddler foods (10.09%), and aquatic animals and their products (9.80%). The processing and packaging methods of food were mainly home-made (9.38%) and bulk food (7.54%).
Conclusions
The detection rate of Salmonella in children aged 0-6 years is high in Guizhou Province, with strong seasonal characteristics. The detection rates of other foods, fruits and their products, infant and toddler foods, and aquatic animals and their products are high. Enhanced pathogen surveillance for susceptible populations and high-risk foods, coupled with public health education during summer/autumn, is recommended.
6.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
7.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
8.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
9.Effect of laminin subunit α3 on epithelial-mesenchymal transition, invasion, and metastasis abilities of pancreatic cancer
Nenghong YANG ; Likun REN ; She TIAN ; Min HAN ; Zhu LI ; Yuxiang ZHAO ; Peng LIU
Journal of Clinical Hepatology 2025;41(2):322-332
ObjectiveTo investigate the effect of laminin subunit α3 (LAMA3) on the epithelial-mesenchymal transition (EMT), invasion, and metastasis abilities of pancreatic cancer (PC). MethodsA comprehensive analysis was performed for tumor- and EMT-related databases to identify the EMT genes associated with PC, especially LAMA3. The methods of qRT-PCR and Western blot were used to measure the expression level of LAMA3 in PC tissue and cell lines; immunofluorescence assay was used to determine the localization of LAMA3 in PANC-1 cells; Transwell assay was used to investigate the effect of LAMA3 on the invasion and migration abilities of PC cells. The t-test was used for comparison of continuous data between groups. ResultsThe analysis of the TCGA database identified 3 EMT-related oncogenes for PC, i.e., LAMA3, AREG, and SDC1. The LASSO-Cox regression model showed that LAMA3 had the most significant impact on the prognosis of PC (risk score=0.256 1×LAMA3+0.043 1×SDC1+0.071 4×AREG). The Cox model and nomogram showed that the high expression of LAMA3 was an independent risk factor for the poor prognosis of PC (hazard ratio=1.32, 95% confidence interval: 1.07 — 1.62, P<0.01). Experimental results showed that there was a significant increase in the expression of LAMA3 in pancreatic cancer tissue compared with the normal pancreatic tissue. Compared with the HPDE cell line, there were varying degrees of increase in the expression of LAMA3 in pancreatic cancer AsPC-1, BxPC-3, PANC-1, MIA PaCa-2, and SW1990 cell lines, with the highest expression level in PANC-1 cells. The enrichment analysis showed that LAMA3 was associated with the biological processes and signaling pathways such as EMT, collagen metabolism, extracellular matrix degradation, the TGF-β pathway, and the PI3K pathway. After the knockdown of LAMA3, there were significant reductions in the expression levels of N-Cadherin, Vimentin, and Snail, while there was a significant increase in the expression level of E-Cadherin. Transwell assay showed that there were significant reductions in the invasion and migration abilities of PANC-1 cells after the knockdown of LAMA3. ConclusionLAMA3 is highly expressed in PC and can promote the EMT, invasion, and migration of PC cells, and therefore, LAMA3 may be used as a novel diagnostic marker and a new therapeutic target for PC.
10.Mechanism of Modified Danggui Shaoyaosan in Improving Inflammation and Apoptosis in Acne via Regulating JNK/p38 MAPK Pathway
Gongzhen CHEN ; Yuqi YANG ; Xin LIU ; Ting TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):31-40
ObjectiveTo explore the therapeutic effects and mechanisms of modified Danggui Shaoyaosan on acne based on the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway. MethodsA rat ear acne model was established in SD rats, and the rats were divided into a blank group, a model group, and low-, medium-, and high-dose groups of modified Danggui Shaoyaosan (7.15, 14.30, 28.60 g·kg·d-1), with six rats in each group. After the administration for 14 consecutive days, morphological changes in the rats' auricles were observed, and hematoxylin-eosin (HE) staining was used to examine the pathological changes in the acne-affected ear tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the ear tissue. Quantitative reverse transcription polymerase chain reaction (Real-time PCR) was performed to detect the mRNA expression levels of Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), JNK, and p38 MAPK in the ear tissue. Additionally, Western blot analysis was conducted to assess the protein levels of Caspase-3, Bcl-2, Bax, JNK, and p38 MAPK in the ear tissue. The active components and key targets of modified Danggui Shaoyaosan in the treatment of acne were identified through network pharmacology analysis. Molecular docking was then employed to evaluate the interactions between the main active components and the key targets. ResultsThe results of the animal experiment demonstrated that compared with those in the blank group, rats in the model group exhibited redness, swelling, thickening, hardening, dryness, and roughness of the auricle. The surface showed sebaceous scales and desquamation, accompanied by acne-like lesions such as papule-like elevations or cysts. Histopathological changes included keratinization, epidermal thickening, dermal collagen fiber degeneration and necrosis, subcutaneous muscle degeneration and necrosis, inflammatory cell infiltration, and fibrous tissue proliferation. The mRNA and protein expression levels of IL-1β, TNF-α, Caspase-3, Bax, JNK, and p38 MAPK were significantly increased (P<0.01), while those of Bcl-2 were significantly decreased (P<0.01). In comparison to the model group, the modified Danggui Shaoyaosan groups showed marked improvement in acne-like lesions of the auricle, with varying degrees of histopathological damage reduction. Additionally, the mRNA and protein expression levels of IL-1β, TNF-α, Caspase-3, Bax, JNK, and p38 MAPK in the tissue were significantly decreased (P<0.05, P<0.01), while those of Bcl-2 were significantly increased (P<0.05, P<0.01). Network pharmacology analysis indicated that the key compounds in modified Danggui Shaoyaosan responsible for its effects in treating acne may include acacetin, kaempferol, luteolin, quercetin, wogonin, and baicalein. These compounds exerted their effects by modulating core targets such as TNF, IL-1β, Caspase-3, and Bcl-2, thereby alleviating inflammation and apoptosis and ultimately improving acne symptoms. ConclusionModified Danggui Shaoyaosan may exert its therapeutic effects on acne by inhibiting the activation of the JNK/p38 MAPK pathway, thereby alleviating inflammation and apoptosis.


Result Analysis
Print
Save
E-mail