1.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
2.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
3.Impacts of advanced male age on sperm DNA methylation and subsequent development of embryos and offspring.
Wen LIU ; Ge FANG ; Xiao LI ; Shao-Ming LU
National Journal of Andrology 2025;31(2):172-176
Male factors contribute to infertility at roughly the same rate as female factors, and sperm DNA methylation in advanced-aged males directly affects semen parameters and significantly reduces fertility and increases the miscarriage rate of spouses. Many adverse outcomes of reproductive health are associated with advanced reproductive age of men, and few studies are reported on the influence of paternal age on the health of the offspring. The role of advanced age in human sperm DNA methylation variation and mechanism of its subsequent influence on the offspring health remain unclear. Attention should be paid to the influence of reproductive age on pregnancy outcomes in this population. This reviews focuses on the impacts of advanced male age on sperm DNA methylation and consequently on reproductive outcomes and the offspring, with elucidation of its underlying mechanisms, aiming to provide some more useful evidence for solving related clinical problems.
Humans
;
DNA Methylation
;
Male
;
Spermatozoa/metabolism*
;
Female
;
Pregnancy
;
Paternal Age
;
Pregnancy Outcome
;
Embryonic Development
4.Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation.
Baojin MA ; Jianhua LI ; Yuanhua SANG ; Yang YU ; Jichuan QIU ; Jinlong SHAO ; Kai LI ; Shiyue LIU ; Mi DU ; Lingling SHANG ; Shaohua GE
Journal of Peking University(Health Sciences) 2025;57(5):841-846
The prevalence of periodontitis in China is as high as 74.2%, making it the leading cause of tooth loss in adults and severely impacting both oral and overall health. The treatment of periodontitis and periodontal tissue regeneration are global challenges of significant concern. GE Shaohua' s group at School and Hospital of Stomatology, Shandong University has focused on the key scientific issue of "remodeling the periodontal inflammatory microenvironment and optimizing tissue repair and regeneration". They have elucidated the mechanisms underlying the persistence of periodontitis, developed bioactive materials to enhance stem cell regenerative properties, and constructed a series of guided tissue regeneration barrier membranes to promote periodontal tissue repair, leading to the establishment of a comprehensive technology system for the treatment of periodontitis. Specific achievements and progress include: (1) Elucidating the mechanism by which key periodontal pathogens evade antimicrobial autophagy, leading to inflammatory damage; developing intelligent antimicrobial hydrogels and nanosystems, and creating metal-polyphenol network microsphere capsules to reshape the periodontal inflammatory microenvironment; (2) Explaining the mechanisms by which nanomaterial structures and electroactive interfaces regulate stem cell behavior, developing optimized nanostructures and electroactive biomaterials, thereby effectively enhancing the regenerative repair capabilities of stem cells; (3) Creating a series of biphasic heterogeneous barrier membranes, refining guided tissue regeneration and in situ tissue engineering techniques, stimulating the body' s intrinsic repair potential, and synergistically promoting the structural regeneration and functional reconstruction of periodontal tissues. The research outcomes of the group have innovated the fundamental theories of periodontal tissue regeneration, broken through foreign technological barriers and patent blockades, established a cascade repair strategy for periodontal regeneration, and enhanced China' s core competitiveness in the field of periodontal tissue regeneration.
Humans
;
Stem Cells/physiology*
;
Periodontitis/therapy*
;
Guided Tissue Regeneration, Periodontal/methods*
;
Regeneration
;
Biocompatible Materials
;
Tissue Engineering/methods*
5.Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification.
Tiantian GE ; Yao CHEN ; Lantian PANG ; Junwei SHAO ; Zhi CHEN
Journal of Zhejiang University. Science. B 2025;26(4):353-370
BACKGROUND: PANoptosis has the features of pyroptosis, apoptosis, and necroptosis. Numerous studies have confirmed the diverse roles of various types of cell death in acute liver failure (ALF), but limited attention has been given to the crosstalk among them. In this study, we aimed to explore the role of PANoptosis in ALF and uncover new targets for its prevention or treatment. METHODS: Three ALF-related datasets (GSE14668, GSE62029, and GSE74000) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Hub genes were identified through intersecting DEGs, genes obtained from weighted gene co-expression network analysis (WGCNA), and genes related to PANoptosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein‒protein interaction (PPI) analyses and gene set enrichment analysis (GSEA) were performed to determine functional roles. Verification was performed using an ALF mouse model. RESULTS: Our results showed that expression of seven hub genes (B-cell lymphoma-2-modifying factor (BMF), B-cell lymphoma-2-interacting protein 3-like (BNIP3L), Caspase-1 (CASP1), receptor-interacting protein kinase 3 (RIPK3), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA), uncoordinated-5 homolog B receptor (UNC5B), and Z-DNA-binding protein 1 (ZBP1)) was up-regulated in liver samples of patients. However, in the ALF mouse model, the expression of BNIP3L, RIPK3, phosphorylated RIPK3 (P-RIPK3), UACA, and cleaved caspase-1 was up-regulated, while the expression of CASP1 and UNC5B was down-regulated. The expression of ZBP1 and BMF increased only during the development of ALF, and there was no significant change in the end stage. Immunofluorescence of mouse liver tissue showed that macrophages expressed all seven markers. Western blot results showed that pyroptosis, apoptosis, and necroptosis were always involved in lipopolysaccharide (LPS)/ d-galactosamine (d-gal)-induced ALF mice. The ALF cell model showed that bone marrow-derived macrophages (BMDMs) form PANoptosomes after LPS stimulation. CONCLUSIONS: Our results suggest that PANoptosis of macrophages promotes the development of ALF. The seven new ALF biomarkers identified and validated in this study may contribute to further investigation of diagnostic markers or novel therapeutic targets of ALF.
Animals
;
Liver Failure, Acute/genetics*
;
Computational Biology
;
Mice
;
Pyroptosis/genetics*
;
Humans
;
Protein Interaction Maps
;
Apoptosis/genetics*
;
Necroptosis/genetics*
;
Gene Regulatory Networks
;
Gene Ontology
;
Gene Expression Profiling
;
Disease Models, Animal
6.Natural killer cell-derived granzyme B as a therapeutic target for alleviating graft injury during liver transplantation.
Kai WANG ; Zhoucheng WANG ; Xin SHAO ; Lijun MENG ; Chuanjun LIU ; Nasha QIU ; Wenwen GE ; Yutong CHEN ; Xiao TANG ; Xiaodong WANG ; Zhengxing LIAN ; Ruhong ZHOU ; Shusen ZHENG ; Xiaohui FAN ; Xiao XU
Acta Pharmaceutica Sinica B 2025;15(10):5277-5293
Liver transplantation (LT) has become a standard treatment for end-stage liver diseases, and graft injury is intricately associated with poor prognosis. Granzyme B (GZMB) plays a vital role in natural killer (NK) cell biology, but whether NK-derived GZMB affects graft injury remains elusive. Through the analysis of single-cell RNA-sequencing data obtained from human LT grafts and the isolation of lymphocytes from mouse livers following ischemia-reperfusion injury (IRI), we demonstrated that 2NK cells with high expression of GZMB are enriched in patients and mice. Both systemically and liver-targeted depletion of NK cells led to a notable reduction in GZMB+ cell infiltration, subsequently resulting in diminished graft injury. Notably, the reconstitution of Il2rg -/- Rag2 -/- mice with purified Gzmb-KO NK cells demonstrated superior outcomes compared to those with wild-type NK cells. Crucially, global knockout of GZMB and pharmacological inhibition exhibited remarkable improvements in liver function in both mouse IRI and rat LT models. Moreover, a phosphorylated derivative of FDA-approved vidarabine was identified as an effective inhibitor of mouse GZMB activity by molecular dynamics, which could provide a potential avenue for therapeutic intervention. Therefore, targeting NK cell-derived GZMB during the LT process suggests potential therapeutic strategies to improve post-transplant outcomes.
7.Correction to: Scorpion Venom Heat-Resistant Peptide is Neuroprotective Against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway.
Xu-Gang WANG ; Dan-Dan ZHU ; Na LI ; Yue-Lin HUANG ; Ying-Zi WANG ; Ting ZHANG ; Chen-Mei WANG ; Bin WANG ; Yan PENG ; Bi-Ying GE ; Shao LI ; Jie ZHAO
Neuroscience Bulletin 2025;41(3):549-550
8.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
9.Investigation on Clinical Oncology Teaching Among Medical Students
Zhiyang ZHANG ; Lin ZHAO ; Yajuan SHAO ; Xiang WANG ; Ningning LI ; Xiaohong NING ; Yuping GE
Medical Journal of Peking Union Medical College Hospital 2024;15(1):223-228
10.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.

Result Analysis
Print
Save
E-mail