1.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
2.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
3.Evaluation of the effect of integrated interventions on comorbidity of myopia and obesity among primary and secondary school students in Tongzhou District in Beijing
YANG Gang, YANG Dongmei, SONG Yi, LI Jing, WEN Han, CHE Jingyue, DONG Yanhui
Chinese Journal of School Health 2025;46(1):39-44
Objective:
To evaluate the intervention effectiveness of co-occurrence and prevention for myopia and obesity among primary and secondary school students, so as to provide a scientific basis for the development of comprehensive intervention measures in myopia and obesity.
Methods:
From September 2022 to September 2023, a cluster random sampling method was used to select 6 primary schools and 6 junior high schools from Tongzhou District, Beijing. Participants were randomly assigned to an intervention group (914 before intervention and 754 after intervention) and a control group (868 before intervention and 652 after intervention), with an expected duration of one academic year. Based on the RE-AIM framework, integrate resources from families, schools, communities, and medical institutions to develop a school-based intervention technology packagefor the co-occurrence and prevention of myopia and obesity in children. The intervention group received intervention according to the comprehensive intervention technology package, while the control group did not receive any intervention measures. Relevant health indicators during the baseline period and after intervention were measured and collected, and groups were compared by Chi quest test, t-test and Wilcoxon rank sum test.
Results:
After intervention, the uncorrected visual acuity of primary and secondary school students in the intervention group (4.79±0.30) and the control group (4.77±0.33) both decreased compared to those before intervention (4.80±0.30, 4.90±0.32) ( t =-7.00,-5.24); the decrease in uncorrected visual acuity in the intervention group was smaller than that in the control group( t =5.33)( P <0.01). After intervention, body mass index, waist circumference, hip circumference, and body fat percentage of primary and secondary school students in the intervention group decreased compared to those before intervention. However, the changes in these indicators were not statistically significant ( t/Z =-0.03, - 0.36,- 0.30,- 0.01, P >0.05); the above indicators in the control group increased compared to those before intervention, but only hip circumference and body fat percentage showed statistically significant changes ( t/Z =2.17, 2.62, P <0.05). After intervention, both the intervention group and the control group showed increases in systolic and diastolic blood pressure compared to those before intervention(intervention group: t =2.16,5.29; control group: t =6.84,5.07); the intervention group had lower systolic and diastolic blood pressure than the control group( t = -5.27 , -2.08)( P <0.05). After intervention, the intervention and the control groups had statistically significant differences in cognitive accuracy(92.48%, 69.33%) in terms of "outdoor exercise can prevent myopia" and "having 5 servings of adult fist sized vegetables and fruits every day" ( χ 2=6.30, 7.86, P <0.05). There was a statistically significant difference in the proportion of primary and secondary school students in the intervention group (40.98%) and the control group (35.43%) for "who did not drink sugary drinks for every day in the past 7 days" ( χ 2=4.32, P <0.05). After intervention, the intervention group and the control group showed increases in "school outdoor activity duration on school days" and "outdoor activity duration on rest days" compared to those before intervention ( t/Z =-13.32,-9.71;- 2.59,-2.69);the behavior rate of "visual acuity measurement frequency at least once every 3 months" in the intervention group (46.68%) and the control group (52.76%) increased compared to those before intervention (36.43%, 44.01%), and the increases in the intervention group were greater than that in the control group ( χ 2=17.52,11.08) ( P <0.05).
Conclusions
Comprehensive intervention measures have significant intervention effects on controlling the occurrence and development of comorbidity of myopia and obesity in children. It could actively promote collaboration and cooperation among families, schools, communities and medical institutions to reduce the occurrence of myopia and obesity among primary and secondary school students.
4.Communication Between Mitochondria and Nucleus With Retrograde Signals
Wen-Long ZHANG ; Lei QUAN ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(7):1687-1707
Mitochondria, the primary energy-producing organelles of the cell, also serve as signaling hubs and participate in diverse physiological and pathological processes, including apoptosis, inflammation, oxidative stress, neurodegeneration, and tumorigenesis. As semi-autonomous organelles, mitochondrial functionality relies on nuclear support, with mitochondrial biogenesis and homeostasis being stringently regulated by the nuclear genome. This interdependency forms a bidirectional signaling network that coordinates cellular energy metabolism, gene expression, and functional states. During mitochondrial damage or dysfunction, retrograde signals are transmitted to the nucleus, activating adaptive transcriptional programs that modulate nuclear transcription factors, reshape nuclear gene expression, and reprogram cellular metabolism. This mitochondrion-to-nucleus communication, termed “mitochondrial retrograde signaling”, fundamentally represents a mitochondrial “request” to the nucleus to maintain organellar health, rooted in the semi-autonomous nature of mitochondria. Despite possessing their own genome, the “fragmented” mitochondrial genome necessitates reliance on nuclear regulation. This genomic incompleteness enables mitochondria to sense and respond to cellular and environmental stressors, generating signals that modulate the functions of other organelles, including the nucleus. Evolutionary transfer of mitochondrial genes to the nuclear genome has established mitochondrial control over nuclear activities via retrograde communication. When mitochondrial dysfunction or environmental stress compromises cellular demands, mitochondria issue retrograde signals to solicit nuclear support. Studies demonstrate that mitochondrial retrograde signaling pathways operate in pathological contexts such as oxidative stress, electron transport chain (ETC) impairment, apoptosis, autophagy, vascular tension, and inflammatory responses. Mitochondria-related diseases exhibit marked heterogeneity but invariably result in energy deficits, preferentially affecting high-energy-demand tissues like muscles and the nervous system. Consequently, mitochondrial dysfunction underlies myopathies, neurodegenerative disorders, metabolic diseases, and malignancies. Dysregulated retrograde signaling triggers proliferative and metabolic reprogramming, driving pathological cascades. Mitochondrial retrograde signaling critically influences tumorigenesis and progression. Tumor cells with mitochondrial dysfunction exhibit compensatory upregulation of mitochondrial biogenesis, excessive superoxide production, and ETC overload, collectively promoting metastatic tumor development. Recent studies reveal that mitochondrial retrograde signaling—mediated by altered metabolite levels or stress signals—induces epigenetic modifications and is intricately linked to tumor initiation, malignant progression, and therapeutic resistance. For instance, mitochondrial dysfunction promotes oncogenesis through mechanisms such as epigenetic dysregulation, accumulation of mitochondrial metabolic intermediates, and mitochondrial DNA (mtDNA) release, which activates the cytosolic cGAS-STING signaling pathway. In normal cells, miR-663 mediates mitochondrion-to-nucleus retrograde signaling under reactive oxygen species (ROS) regulation. Mitochondria modulate miR-663 promoter methylation, which governs the expression and supercomplex stability of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and assembly factors. However, dysfunctional mitochondria induce oxidative stress, elevate methyltransferase activity, and cause miR-663 promoter hypermethylation, suppressing miR-663 expression. Mitochondrial dysfunction also triggers retrograde signaling in primary mitochondrial diseases and contributes to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Current therapeutic strategies targeting mitochondria in neurological diseases focus on 5 main approaches: alleviating oxidative stress, inhibiting mitochondrial fission, enhancing mitochondrial biogenesis, mitochondrial protection, and insulin sensitization. In AD patients, mitochondrial morphological abnormalities and enzymatic defects, such as reduced pyruvate dehydrogenase and α-ketoglutarate dehydrogenase activity, are observed. Platelets and brains of AD patients exhibit diminished cytochrome c oxidase (COX) activity, correlating with mitochondrial dysfunction. To model AD-associated mitochondrial pathology, researchers employ cybrid technology, transferring mtDNA from AD patients into enucleated cells. These cybrids recapitulate AD-related mitochondrial phenotypes, including reduced COX activity, elevated ROS production, oxidative stress markers, disrupted calcium homeostasis, activated stress signaling pathways, diminished mitochondrial membrane potential, apoptotic pathway activation, and increased Aβ42 levels. Furthermore, studies indicate that Aβ aggregates in AD and α‑synuclein aggregates in PD trigger mtDNA release from damaged microglial mitochondria, activating the cGAS-STING pathway. This induces a reactive microglial transcriptional state, exacerbating neurodegeneration and cognitive decline. Targeting the cGAS-STING pathway may yield novel therapeutics for neurodegenerative diseases like AD, though translation from bench to bedside remains challenging. Such research not only deepens our understanding of disease mechanisms but also informs future therapeutic strategies. Investigating the triggers, core molecular pathways, and regulatory networks of mitochondrial retrograde signaling advances our comprehension of intracellular communication and unveils novel pathogenic mechanisms underlying malignancies, neurodegenerative diseases, and type 2 diabetes mellitus. This review summarizes established mitochondrial-nuclear retrograde signaling axes, their roles in interorganellar crosstalk, and pathological consequences of dysregulated communication. Targeted modulation of key molecules and proteins within these signaling networks may provide innovative therapeutic avenues for these diseases.
5.Effect of acupuncture pretreatment on PINK1/Parkin pathway-mediated mitophagy in rats with exercise-induced muscle damage.
Yulin GUO ; Ming GAO ; Huan CHEN ; Hui LI ; Xun TIAN ; Yuan ZHAO ; Gang XU ; Junling WEN ; Shaoxiong LI
Chinese Acupuncture & Moxibustion 2025;45(11):1617-1626
OBJECTIVE:
Based on the PTEN-induced hypothetical kinase 1 (PINK1)/Parkin pathway, the effect of acupuncture pretreatment on the expression of mitochondrial autophagy-related proteins in gastrocnemius muscle tissue of rats with exercise-induced muscle damage (EIMD) was observed, and the underlying mechanism of acupuncture pretreatment for the prevention and treatment of EIMD was explored.
METHODS:
Of 88 SD male rats, aged 6 weeks, 8 rats were randomly selected as a blank group, and the remaining 80 rats were randomized into a model group and an acupuncture pretreatment group, with 40 rats in each group. Either the model group or the acupuncture pretreatment group was subdivided randomly into 5 subgroups with 8 rats in each one according to the time points of sample collection, 0 h, 12 h, 24 h, 48 h and 72 h after modeling. An intermittent downhill running centrifugal exercise was carried out on an animal experimental treadmill to establish the EIMD model in the model group and the acupuncture pretreatment group. The rats in the acupuncture pretreatment group received acupuncture at "Guanyuan" (CV6) and bilateral "Zusanli" (ST36), once a day for 20 min each time, for 7 consecutive days before EIMD model preparation. Transmission electron microscopy was used to observe the ultrastructure of gastrocnemius muscle tissue in each group. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in serum were detected by ELISA. Western blot was used to detect the protein expression of PINK1, Parkin, sequestosome 1 (p62) and microtubule-associated protein light chain 3B (LC3B) in rat gastrocnemius muscle tissue. Real-time PCR was adopted to detect the mRNA expression of PINK1, Parkin, p62 and LC3B in rat gastrocnemius muscle tissue.
RESULTS:
Compared with the blank group, the mitochondria of gastrocnemius muscles showed obvious swelling in the 0 h, 12 h, 24 h, and 48 h model subgroups , autophagosomes were formed in the 12 h and 24 h model subgroups, and the mitochondrial morphology returned to normal gradually in the 72 h model subgroup. The serum MDA contents of rats in 5 model subgroups increased (P<0.01, P<0.05). The contents of SOD and CAT in the subgroups of 0 h, 12 h, 24 h and 48 h decreased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1, Parkin and LC3B in gastrocnemius muscle tissue of rats in 0 h, 12 h and 24 h subgroups were elevated (P<0.01); and the protein and mRNA expression levels of p62 in the 0 h, 12 h, 24 h and 48 h subgroups were reduced (P<0.01, P<0.05). Compared with the model subgroup at the same time point, the myofibril damage and the degree of mitochondrial swelling were mild in each acupuncture pretreatment subgroup, and the numbers of autophagosomes were fewer. The contents of MDA in the acupuncture pretreatment subgroups decreased at 0 h, 12 h, 24 h, and 48 h (P<0.05, P<0.01). The contents of SOD and CAT in the 12 h acupuncture pretreatment subgroup increased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1 and Parkin in the 0 h, 12 h, and 24 h acupuncture pretreatment subgroups decreased (P<0.01, P<0.05). The protein and mRNA expression levels of LC3B in the 12 h acupuncture pretreatment subgroup decreased (P<0.01), and that of p62 in the 0 h and 24 h acupuncture pretreatment subgroups increased (P<0.01, P<0.05).
CONCLUSION
The intermittent downhill running centrifugal exercise induces the excessive mitochondrial autophagy. Acupuncture pretreatment may attenuate EIMD, and the underlying mechanism is related to the regulation of PINK1/Parkin signaling pathway expression, reducing oxidative stress damage in skeletal muscle cells, and inhibiting mitochondrial autophagy overactivation.
Animals
;
Ubiquitin-Protein Ligases/genetics*
;
Male
;
Rats
;
Acupuncture Therapy
;
Protein Kinases/genetics*
;
Rats, Sprague-Dawley
;
Mitophagy
;
Humans
;
Muscle, Skeletal/metabolism*
;
Physical Conditioning, Animal
;
Muscular Diseases/physiopathology*
;
Signal Transduction
6.Exploration of biological essence of blood heat syndrome and mechanism of blood-cooling traditional Chinese medicine from combination of disease and syndrome.
Fei-Yue SUN ; Zhi-Wei JING ; Jin-Wen GE ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2025;50(4):985-993
Blood heat syndrome, one of the main subtypes of blood syndrome in traditional Chinese medicine(TCM), is mainly diagnosed by bleeding and heat manifestations and treated by the blood-cooling method. The biological essence of blood heat syndrome has not been elucidated yet, and there is a lack of systematic research on the potential mechanisms underlying the blood-cooling method. The biological essence of blood heat syndrome is closely related to abnormal immune response, oxidative stress, coagulation dysfunction, endocrine disorders, abnormalities in energy metabolism and so on. Blood heat syndrome is common in autoimmune skin diseases( such as systemic lupus erythematosus, psoriasis, and purpura), central hyperthermia, infectious diseases( such as infectious mononucleosis and COVID-19), and hemorrhagic diseases in gynecology. As the primary clinical therapy for blood heat syndrome, blood-cooling TCM is usually combined with the TCM with effects of activating blood and resolving stasis, nourishing Yin,and extinguishing wind to play the role of cooling blood. The mechanisms of above therapies may be attributed to reducing inflammation, inhibiting oxidative stress, restoring the balance of blood coagulation and metabolism, regulating the secretion of sex hormones, and alleviating allergic reactions. This article systematically explores the biological essence of blood heat syndrome and elucidates the targets and underlying mechanism of the blood-cooling method, laying a scientific foundation for the clinical application of TCM in the prevention and treatment of diseases associated with blood heat syndrome.
Humans
;
Medicine, Chinese Traditional/methods*
;
Hyperthermia/diagnosis*
;
Drugs, Chinese Herbal/therapeutic use*
;
Syndrome
7.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
8.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
9.Network Meta-analysis of Chinese medicine injection for cerebral small vessel disease.
Qi-Lin DU ; Rui FANG ; Hui-Fang NIE ; Zhi-Gang MEI ; Jin-Wen GE
China Journal of Chinese Materia Medica 2025;50(9):2563-2581
Network Meta-analysis was conducted to evaluate the efficacy and safety of different traditional Chinese medicine injections combined with conventional western medicine in treatment of cerebral small vessel disease(CSVD). Computerized searches were conducted in PubMed, Cochrane Library, Web of Science, EMbase, CNKI, Wanfang, VIP, and SinoMed for randomized controlled trial(RCT) published in Chinese or English using traditional Chinese medicine injections to treat CSVD. The search time is from the inception to July 15, 2024. Literature screening and statistical analysis were conducted with NoteExpress 3.0.3, RevMan 5.3.5, and Stata 15.1.6. A total of 45 articles were included, involving 3 717 patients, with 1 944 patients in the treatment group and 1 773 patients in the control group. A total of 15 kinds of traditional Chinese medicine injections were involved. Network Meta-analysis indicated that,(1) in terms of improving clinical total effective rate, the best intervention in SUCRA was Ciwujia Injection + conventional western medicine.(2) In terms of reducing NIHSS scores, the best intervention in SUCRA was Xueshuantong Injection + conventional western medicine.(3) In terms of improving ADL scores, the best intervention in SUCRA was Danshen Injection + conventional western medicine.(4) In terms of improving MMSE scores, the best intervention in SUCRA was Xueshauntong Injection + conventional western medicine.(5) In terms of improving MoCA scores, the best intervention in SUCRA was Salvianolate Injection + conventional western medicine.(6) In terms of reducing plasma viscosity(PV), the best intervention in SUCRA was Danhong Injection + conventional western medicine.(7) In terms of reducing the hematocrit, the best intervention in SUCRA was Xuesaitong Injection + conventional western medicine.(8) In terms of reducing fibrinogen, the best intervention in SUCRA was Xuesaitong Injection + conventional western medicine.(9) In terms of reducing erythrocyte sedimentation rate(ESR), the best intervention in SUCRA was Danshen Injection + conventional western medicine.(10) In terms of reducing total cholesterol(TC), triglycerides(TG), and low-density lipoprotein(LDL), the best intervention in SUCRA was Danshen Injection + conventional western medicine. The radar chart results indicated that the advantage of Salvianolate Injection lies in improving cognitive function, while the advantage of Xueshuantong Injection lies in improving neurological function. The advantage of Xuesaitong Injection lies in improving hemodynamic parameters, and the advantage of Danshen Injection lies in improving behavioral ability, hemodynamics, and blood lipid levels. In terms of safety, there was no significant difference in the incidence of adverse reactions between the traditional Chinese medicine injection treatment group and the conventional western medicine group, and no serious adverse reactions occurred. The results showed that the combination of traditional Chinese medicine injections and conventional western medicine can effectively improve the clinical total effective rate, the neurological and cognitive functions, hemodynamic parameters, and blood lipid levels of patients suffering from CSVD. In addition, more double-blind, multi-center, large-sample RCT is needed to verify these findings and to provide more high-quality evidence on the efficacy and safety of traditional Chinese medicine injections for CSVD.
Humans
;
Cerebral Small Vessel Diseases/drug therapy*
;
Drugs, Chinese Herbal/administration & dosage*
;
Injections
;
Randomized Controlled Trials as Topic
10.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats


Result Analysis
Print
Save
E-mail