1.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
2.Genetic susceptibility of serum HBeAg seroconversion in HBeAg-positive patients with chronic hepatitis B
WU Yue ; ZHANG Zhigang ; GU Ziyang
China Tropical Medicine 2025;25(3):264-
Objective To screen genetic susceptibility markers related to serum HBeAg seroconversion by analyzing the association between host genetic susceptibility markers and seroconversion in HBeAg-positive patients with chronic hepatitis B (CHB), thereby providing potential molecular markers for clinical outcomes and prognosis evaluation in HBeAg-positive patients with CHB. Methods HBeAg-positive patients with CHB were recruited from the outpatient department of the Infectious Department, Second Affiliated Hospital of Air Force Military Medical University to establish a follow-up cohort. Based on whether HBeAg seroconversion occurred during follow-up, the subjects were divided into a case group (serum HBeAg with seroconversion) and a control group (serum HBeAg without seroconversion). MassARRAY SNP genotyping technique was used to detect SNPs of human genome DNA extracted from whole blood of the study subjects. Results Through association analysis between genetic susceptibility marker SNPs and seroconversion of serum HBeAg, it was found that: At the rs101206 8 locus, under the overdominant model, patients carrying the heterozygous GT genotype had a higher likelihood of serum HBeAg seroconversion (OR=1.73, 95%CI: 1.15-2.59, P=0.008); at the rs352140 locus, under the recessive model, patients carrying the TT genotype had a higher likelihood of serum HBeAg seroconversion (OR=1.77, 95%CI: 1.06-2.94, P=0.029); the rs1946518 locus, under the overdominant model, patients carrying the heterozygous GT genotype had a higher likelihood of serum HBeAg seroconversion (OR=1.73, 95%CI: 1.14-2.61, P=0.009); at the rs2306494 locus, under the dominant model, carrying the A allele (GA+AA) was identified as a negative factor for serum HBeAg seroconversion (OR=0.65, 95%CI: 0.42-0.99, P=0.043); at the rs20541 locus, under the recessive model, carrying the AA genotype was identified as a negative factor for serum HBeAg seroconversion (OR=0.31, 95%CI: 0.10-0.92, P=0.019); at the rs1057035 locus, under the dominant model, patients carrying the C allele (CT+CC) had a higher likelihood of serum HBeAg seroconversion (OR=1.78, 95%CI: 1.05-3.03, P=0.034). Therefore, the GT genotype at rs1012068 of DEPDC5 gene, TT genotype at rs352140 of TLR9 gene, GT genotype at rs1946518 of IL18 gene, and GG genotype at rs2306494 of TERF1 gene were conducive to seroconversion of serum HBeAg. The AA genotype at rs20541 of IL-13 gene and the TT genotype at rs1057035 of DICER1 gene were not conducive to seroconversion of serum HBeAg. Conclusion The genetic susceptibility markers (single nucleotide polymorphism loci) of host genetic genes in HBeAg-positive patients with CHB are associated with seroconversion of serum HBeAg, and the mechanisms by which these SNPs participate in serum HBeAg seroconversion require further investigation.
3.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
4.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
5.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
6.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
7.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
8.Research progress of mouse model of hepatitis B virus infection
Chao FAN ; Chuantao YE ; Ziyang GU ; Xiaoyan WANG ; Bibo KANG ; Ying ZHANG
Chinese Journal of Hepatology 2023;31(2):221-224
Hepatitis B virus (HBV) infection is a global health problem. Animal models are important for the study of the HBV infection mechanism. In the study related to the mouse model of HBV infection, the researchers have established a variety of mouse models, including transgenic, plasmid hydrodynamic injection, virus vector transfection, cccDNA cycle simulation, human and mouse liver chimerism, and liver/immune dual humanization, according to the characteristics of HBV infection. Herein, the research progress of these models is summarized. Notably, the application of these models can further clarify the mechanism of HBV infection under the conditions of a specific immune response in vivo and lay the foundation for the development of new antiviral drugs and immunotherapy for HBV infection.
9.Influencing factors for HBeAg seroconversion in patients with chronic hepatitis B
Ziyang GU ; Anhui WANG ; Wenchang HE ; Jiayu LI ; Changxing HUANG
Journal of Clinical Hepatology 2022;38(11):2581-2585
HBeAg seroconversion refers to the disappearance of HBeAg and the appearance of anti-HBe in chronic hepatitis B (CHB) patients with positive HBeAg in the past. HBeAg seroconversion marks the reductions in viral replication, immune tolerance, and liver inflammation and is an important monitoring indicator for evaluating disease conditions and the effect of CHB antiviral therapy, and it also indicates the endpoint of satisfactory treatment. Exploring the influencing factors for HBeAg seroconversion is of great significance to the selection of treatment regimens and the prognostic evaluation of CHB patients. This article mainly elaborates on the association of HBV with HBeAg seroconversion in CHB patients from the aspects of virological factors, host genetic factors, drug factors, and immunological factors.
10.17 beta-hydroxysteroid dehydrogenase 3 deficiency due to novel compound heterozygous variants of HSD17B3 gene in a sib pair.
Su WU ; Bixia ZHENG ; Ting LIU ; Ziyang ZHU ; Wei GU ; Qianqi LIU
Chinese Journal of Medical Genetics 2021;38(8):787-790
OBJECTIVE:
To explore the genetic basis for a sib pair featuring 17beta-hydroxysteroid dehydrogenase type 3 deficiency.
METHODS:
Genomic DNA was extracted from the proband, her sister, and their parents, and was subjected to sequencing analysis with a gene panel for sexual development. Suspected variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
Both the proband and her sister were found to harbor novel compound heterozygous missense variants of the HSD17B3 gene, namely c.839T>C (p.Leu280Pro) and c.239G>T (p.Arg80Leu), which were derived respectively from their mother and father. The variants were unreported previously and predicted to be deleterious by PolyPhen2, MutationTaster and other online software. Based on the American College of Medical Genetics and Genomics standards and guidelines, both c.839T>C(p.Leu280Pro) and c.239G>T (p.Arg80Leu) were predicted to be likely pathogenic (PM2+PP1+PP2+PP3+PP4, PM2+PM5+PP1+PP2+PP3+PP4).
CONCLUSION
The compound heterogeneous variants of the HSD17B3 gene probably underlay the disease in this sib pair. 17beta-hydroxysteroid dehydrogenase type 3 deficiency may lack specific clinical features and laboratory index, genetic testing can facilitate a definitive diagnosis.
17-Hydroxysteroid Dehydrogenases/genetics*
;
Female
;
Genetic Testing
;
Genomics
;
Humans
;
Mutation
;
Mutation, Missense

Result Analysis
Print
Save
E-mail