1.Cloning and Functional Characterization of Farnesyl Diphosphate Synthase Gene in Biosynthesis of Terpenoid Components in Chinese Materia Medica
Yue ZHANG ; Feng ZHANG ; Yue ZHANG ; Chaoyue LIU ; Bolin ZHANG ; Jia LIU ; Caixia WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):175-183
ObjectiveThis study aims to enhance of the farnesyl pyrophosphate(FPP) pool in Saccharomyces cerevisiae by heterologously expressing different farnesyl diphosphate synthases(FPSs) from various plants, thereby increasing the production of terpenoid compounds by the engineered yeast. MethodsRNA from mixed samples of roots, stems, and leaves of seven plants including Arabidopsis thaliana, Rosa rugosa, Artemisia annua, Centella asiatica, Humulus lupulus, Medicago sativa, and Panax ginseng was extracted by column chromatography and reverse transcribed into the first strand of complementary DNA(cDNA), and based on the transcriptome data of the seven species of plants, sequence-specific primers were designed for CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS, the full-length of the genes was cloned, and the genes were analyzed for bioinformatics in order to construct a pESC yeast shuttle vector. These seven plant-derived FPSs were further heterologously expressed in the previous constructed β-elemene-producing yeast, and the yield of β-elemene was indicated for their catalytic acivities. ResultsThe coding sequences of CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS were all of 1 021 bp in length and encoding 301 amino acids, all of which were similarly related to the endogenous FPS-encoding gene(ERG20) in S. cerevisiae. After heterologous expression, RrFPS was identified as the most effective in catalyzing the synthesis of FPP from isopentenyl pyrophosphate(IPP) and dimethylallyl pyrophosphate(DMAPP). Compared to the control strains, the RrFPS overexpressed yeast strains YB-1-Rr and YB-3-Rr increased the production of β-elemene by 231.25% and 189.3%, respectively. ConclusionBy comparing the functions of FPS-encoding genes from seven different plant sources, it is determined that the protein encoded by the RrFPS from R. rugosa has the best catalytic ability, which can provide key genetic elements for the construction of engineered yeast strain constructs with high terpenoid production.
2.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
3.Treatment of Hyperuricemia and Gouty Arthritis by Buyang Huanwu Tongfeng Decoction via Inhibition of PPAR-γ/NF-κB/AGEs/RAGE Pathway Based on Network Pharmacology
Yue CAO ; Wanmei YAO ; Tao YANG ; Man YANG ; Ruimin JIA ; Rongrong LU ; Xue FENG ; Biwang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):182-192
ObjectiveThis paper aims to investigate the potential molecular biological mechanism of Buyang Huanwu Tongfeng decoction in treating hyperuricemia and gouty arthritis by network pharmacology and molecular docking technology and preliminarily verify the mechanism through animal experiments. MethodsThe active ingredients and targets in the Buyang Huanwu Tongfeng decoction were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and ETCM databases. The DisGeNET and GeneCards databases were utilized to acquire disease targets associated with hyperuricemia and gouty arthritis. These disease targets were then intersected with drug targets to identify key targets. The R language ClusterProfiler package and Python were employed for conducting gene ontology(GO) enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis. The regulatory network diagram of the drug-key target-function-pathway was visualized using Cytoscape 3.9.1 software, and the protein-protein interaction (PPI) network for key targets was depicted. Finally, the hub gene was determined through topological analysis. Auto Dock, PyMOL, and other software were used for molecular docking to explore the possible therapeutic mechanism of Buyang Huanwu Tongfeng decoction for hyperuricemia and gouty arthritis. In animal experiments, a composite rat model of hyperuricemia induced by intraperitoneal injection of oteracil potassium combined with gouty arthritis induced by the modified Coderre method was established. Through hematoxylin-eosin(HE) staining, uric acid test, enzyme linked immunosorbent assay(ELISA), Western blot, and real-time polymerase chain reaction(Real-time PCR), the molecular mechanism and key targets of Buyang Huanwu Tongfeng decoction for treating hyperuricemia and gouty arthritis were observed. ResultsAfter screening and removing duplicate values, 76 active ingredients and 15 key targets were finally obtained. GO enrichment analysis yielded that the treatment of hyperuricemia and gouty arthritis with Buyang Huanwu Tongfeng decoction was significantly associated with acute inflammatory response, astrocyte activation, regulation of interleukin (IL)-8 production, nuclear receptor activity, and binding of growth factor receptor. KEGG pathway enrichment analysis obtained that the key target genes were significantly associated with the IL-17 signaling pathway, advanced glycosylation end/receptor of advanced glycation endproducts(AGE/RAGE) signaling pathway, anti-inflammatory, and other pathways. PPI network indicated that albumin(ALB), peroxisome proliferator-activated receptor-γ (PPAR-γ), IL-6, IL-1β, and C-reactive protein(CRP) were the key protein targets. The molecular docking results showed that ALB had the strongest binding force with beta-carotene (β-carotene). Biochemical results showed that blood uric acid decreased in the Buyang Huanwu Tongfeng decoction groups. HE staining results showed that the low-dose (7.76 g·kg-1·d-1), medium-dose (15.53 g·kg-1·d-1), and high-dose (31.05 g·kg-1·d-1) groups of Buyang Huanwu Tongfeng decoction had different degrees of remission, and the remission of the high-dose group was the most obvious. Fibroblastic tissue hyperplasia in synovial joints accompanied with inflammatory cell infiltration, as well as inflammatory cell infiltration in renal tissue of the high-dose group was significantly reduced, followed by the medium-dose and low-dose groups, and the expression of ALB, PPAR-γ, IL-6, IL-1β, and CRP was down-regulated to different degrees. ConclusionBy regulating the targets such as ALB, PPAR-γ, IL-6, IL-1β, and CRP, inhibiting the PPAR-γ/nuclear transcription factor (NF)-κB pathway, and reducing AGEs/RAGE-mediated inflammation, Buyang Huanwu Tongfeng decoction exerts anti-inflammatory and analgesic effects and activates blood circulation and diuresis in the treatment of hyperuricemia and gouty arthritis.
4.The Experience of Retention Enema with Traditional Chinese Medicine for Ulcerative Colitis Based on the Theory of Sweat Pore
Zifu HONG ; Yinghua HE ; Lipeng FENG ; Fei JIA ; Mouwen QYU ; Liang YUAN ; Mingwen JIA
Journal of Traditional Chinese Medicine 2025;66(6):634-637
This paper discussed the nature of ulcerative colitis, that is deficiency of the root and excess of the branch, from the theory of sweat pore, and to explore the theoretical basis and experience of treating this disease with retention enema of traditional Chinese medicine (TCM). The main location of this disease is in the intestine. As a part of sweat pore, the intestinal sweat pore serves as the gateway for the ascending, descending, exiting and entering of qi movement in the zang fu (脏腑) organs, meridians and collaterals, as well as the channel for the transportation of qi, blood and body fluids. The constraint and closure of the intestinal sweat pore are the main pathological basis of ulcerative colitis. According to the manifestations of colonoscopy, and the different etiological factors and pathogenesis that lead to the constraint and closure of sweat pore, there should be different treatment focuses such as expelling wind to open sweat pore, clearing fire to open sweat pore, promoting blood circulation to open sweat pore, for which wind-dispersing herbs, heat-clearing herbs, and blood-activating herbs are used accordingly. The method of retention enema can directly induce Chinese medicinal herbs to the affected part, so as to diffuse and unblock the sweat pore, regulate qi and blood, and thus restore the normal function of the intestinal sweat pore.
5.YTHDF1 regulation of Fis1 on the activation and proliferation and migration ability of hepatic stellate cells
Lin Jia ; Feng Sun ; Qiqi Dong ; Jingjing Yang ; Renpeng Zhou ; Wei Hu ; Chao Lu
Acta Universitatis Medicinalis Anhui 2025;60(1):49-58
Objective:
To explore the effect of YTH domain family protein 1(YTHDF1) on the activation, proliferation and migration of hepatic stellate cells(HSCs) by regulating mitochondrial fission mediated by mitochondrial fission protein 1(Fis1).
Methods:
The mouse hepatic stellate cell line JS-1 was treated with 5 ng/ml TGF-β1 for 24 h to induce its activation and proliferation, andYTHDF1-siRNA was used to construct aYTHDF1silencing model.The experiment was divided into Control group, TGF-β1 group, TGF-β1+si-NC group and TGF-β1+si-YTHDF1 group.Expression changes ofYTHDF1,Fis1and key indicators of fibrosis, type Ⅰ collagen(CollagenⅠ) and α-smooth muscle actin(α-SMA) were detected through reverse transcription quantitative polymerase chain reaction(RT-qPCR) and Western blot; CCK-8 was used to detect cell proliferation ability; Transwell migration assay and cell scratch assay were used to detect cell migration ability; immunofluorescence staining experiment was used to detect the effect ofYTHDF1onFis1-mediated mitochondrial fission; finally, JC-1 staining was used to experimentally detect the effect ofYTHDF1on mitochondrial membrane potential.
Results:
Compared with the Control group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1increased in the TGF-β1 group(P<0.05,P<0.01;P<0.000 1), as well as the fibrosis markersCollagenⅠand the expression level of α-SMA increased(P<0.01;P<0.001,P<0.000 1); while adding CCK-8, the experimental results showed that the proliferation ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); Transwell experimental results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.01); the cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); the immunofluorescence experiment results showed that the TGF-β1 group Mito-Tracker Red staining andFis1co-localization signal increased(P<0.05); JC-1 staining experiment results showed that the mitochondrial membrane potential increased in the TGF-β1 group(P<0.01). Compared with the TGF-β1+si-NC group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1in the TGF-β1+si-YTHDF1 group was reduced(P<0.01;P<0.001), and fibrosis markers the levels ofCollagenⅠandα-SMAwere reduced(P<0.01;P<0.001,P<0.01).CCK-8 experimental results showed that the proliferation ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); Transwell experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.001); cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); immunofluorescence experiment results showed that the Mito-Tracker Red staining andFis1co-localization signal decreased in the TGF-β1+si-YTHDF1 group(P<0.01); JC-1 staining experiment results showed that mitochondrial membrane potential decreased in the TGF-β1+si-YTHDF1 group(P<0.05).
Conclusion
YTHDF1promotes the activation, proliferation and migration capabilities of HSCs by positively regulatingFis1-mediated mitochondrial fission. This suggests thatYTHDF1may be a key gene involved in regulating the activation, proliferation and migration of HSCs.
6.Two new coumarin compounds from Angelica biserrata
Jia-cheng WU ; Han-tao ZHAO ; Feng-die YAN ; Qian-feng CHEN
Acta Pharmaceutica Sinica 2025;60(1):201-204
Two new coumarin glycosides were isolated and purified from the dichloromethane fraction of
7.The role of histone deacetylase 3 in diabetes and its complications, and the research progress on histone deacetylase 3 inhibitors
Jia-yu ZHAI ; Cun-yu FENG ; Xue-feng GAO ; Li-ran LEI ; Lei LEI ; Yi HUAN
Acta Pharmaceutica Sinica 2025;60(1):1-11
Histone deacetylase 3 (HDAC3) is an epigenetic modification enzyme that plays a crucial role in the development and progression of diabetes and its complications. Studies have reported that increased HDAC3 activity is associated with pancreatic
8.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
9.Application of middle hepatic vein splitting and reconstruction technique in split liver transplantation from low-age donor livers
Hui TANG ; Binsheng FU ; Qing YANG ; Jia YAO ; Kaining ZENG ; Xiao FENG ; Shuhong YI ; Yang YANG
Organ Transplantation 2025;16(3):453-459
Objective To explore the feasibility and clinical experience of the middle hepatic vein splitting-reconstruction technique in split liver transplantation from low-age donor livers. Methods A retrospective analysis was conducted on the cases of two low-age donor livers that underwent middle hepatic vein splitting-reconstruction, which were transplanted into four child recipients at the Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University from January 2017 to July 2023. The surgical and postoperative conditions were summarized and analyzed. Results Donor 1 was a 6-year-old and 4-month-old girl with a body weight of 21 kg, and the obtained donor liver weighed 496 g. After splitting, the left and right liver weights were 201 g and 280 g, and transplanted into a 9-month-old boy weighing 6.5 kg and a 9-month-old boy weighing 7.5 kg, respectively. The graft to recipient weight ratio (GRWR) was 3.09% and 3.73%, respectively. Donor 2 was a 5-year-old and 8-month-old boy with a body weight of 19 kg, and the donor liver weighed 673 g. After splitting, the left and right liver weights were 230 g and 400 g, and transplanted into a 13-month-old girl weighing 9.5 kg and a 15-month-old boy weighing 12 kg. The GRWR was 2.42% and 3.33%, respectively. Both donor livers were split ex vivo, with the middle hepatic vein being completely split in the middle and reconstructed using allogeneic iliac vein and iliac artery vascular patches. According to GRWR, none of the 4 transplant livers were reduced in volume. Among the 4 recipients, one died due to postoperative portal vein thrombosis and non-function of the transplant liver, while the other three cases recovered smoothly without early or late complications. Regular follow-up was conducted until July 31, 2023, and liver function recovered well. Conclusions Under the premise of detailed assessment of the donor liver and meticulous intraoperative operation, as well as matching with suitable child recipients, low-age donor livers may be selected for splitting. The complete splitting and reconstruction of the middle hepatic vein in the middle may effectively ensure the adequate venous return of the left and right liver and provide sufficient functional liver volume.
10.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.


Result Analysis
Print
Save
E-mail