1.Clinical Research on Guizhi Fulingwan in Treatment of Ovarian Cancer: A Review
Muxin GUAN ; Jiaxing FENG ; Mengyi ZHU ; Yu WANG ; Xiaoke WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):296-303
Ovarian cancer (OC) is a common gynecological malignant tumor in clinical practice. In the early stage,it is often asymptomatic,while in the late stage,it mainly presents with non-specific symptoms such as abdominal distension,poor appetite,and dull abdominal pain. Some patients may also have cachexia such as weight loss and anemia. Early diagnosis is difficult,and the mortality rate ranks first among gynecological malignant tumors,making OC a major challenge in clinical treatment. The classic Chinese medicine formula Guizhi Fulingwan comes from the Jingui Yaolue and has the effects of promoting blood circulation,removing blood stasis,and reducing abdominal lumps. In recent years,it has been widely used to treat OC with good results. This article summarized the clinical application of Guizhi Fulingwan in the treatment of OC from two aspects:The analysis of its basic prescriptions and clinical research. In terms of basic prescriptions,the formula has the ability to promote blood circulation,remove blood stasis,and reduce abdominal lumps. It can exert therapeutic effects considering both water and blood aspects and reduce abdominal lumps, with characteristics of simultaneous Yang warming and heat clearing and parallel supplementation and elimination. Through the methods of "circulation" and "supplementation", it strengthens the body,dispels evil,and eliminates underlying symptoms. In clinical studies,Guizhi Fulingwan can be applied to various stages of patients with OC,which not only promotes the recovery of the body after OC surgery but also can be combined with chemotherapy and immunotherapy to synergistically treat advanced OC and enhance treatment efficacy. In addition,the formula can also alleviate various adverse reactions caused by chemotherapy,with high safety,improve patients' quality of life,prolong survival,and optimize tumor control effects. Based on the above analysis,this article elaborated on the current clinical research status of Guizhi Fulingwan combined with Western medicine in the treatment of OC and proposed suggestions and improvements to address the shortcomings in current clinical research,so as to provide reference for the clinical application of this formula in the treatment of OC and the construction of a combined traditional Chinese and Western medicine treatment model.
2.Clinical Research on Guizhi Fulingwan in Treatment of Ovarian Cancer: A Review
Muxin GUAN ; Jiaxing FENG ; Mengyi ZHU ; Yu WANG ; Xiaoke WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):296-303
Ovarian cancer (OC) is a common gynecological malignant tumor in clinical practice. In the early stage,it is often asymptomatic,while in the late stage,it mainly presents with non-specific symptoms such as abdominal distension,poor appetite,and dull abdominal pain. Some patients may also have cachexia such as weight loss and anemia. Early diagnosis is difficult,and the mortality rate ranks first among gynecological malignant tumors,making OC a major challenge in clinical treatment. The classic Chinese medicine formula Guizhi Fulingwan comes from the Jingui Yaolue and has the effects of promoting blood circulation,removing blood stasis,and reducing abdominal lumps. In recent years,it has been widely used to treat OC with good results. This article summarized the clinical application of Guizhi Fulingwan in the treatment of OC from two aspects:The analysis of its basic prescriptions and clinical research. In terms of basic prescriptions,the formula has the ability to promote blood circulation,remove blood stasis,and reduce abdominal lumps. It can exert therapeutic effects considering both water and blood aspects and reduce abdominal lumps, with characteristics of simultaneous Yang warming and heat clearing and parallel supplementation and elimination. Through the methods of "circulation" and "supplementation", it strengthens the body,dispels evil,and eliminates underlying symptoms. In clinical studies,Guizhi Fulingwan can be applied to various stages of patients with OC,which not only promotes the recovery of the body after OC surgery but also can be combined with chemotherapy and immunotherapy to synergistically treat advanced OC and enhance treatment efficacy. In addition,the formula can also alleviate various adverse reactions caused by chemotherapy,with high safety,improve patients' quality of life,prolong survival,and optimize tumor control effects. Based on the above analysis,this article elaborated on the current clinical research status of Guizhi Fulingwan combined with Western medicine in the treatment of OC and proposed suggestions and improvements to address the shortcomings in current clinical research,so as to provide reference for the clinical application of this formula in the treatment of OC and the construction of a combined traditional Chinese and Western medicine treatment model.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
7.Study on relationships of MS4A1 gene polymorphism with blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma
Feng SHI ; Tao LIU ; He HUANG ; Caifu FANG ; Shaoxing GUAN ; Zhang ZHANG ; Zhao WANG ; Xiaojie FANG ; Zhuojia CHEN ; Shu LIU
China Pharmacy 2025;36(13):1641-1647
OBJECTIVE To explore the effects of CD20 coding gene (MS4A1) polymorphism on the blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma. METHODS A prospective observational study was conducted on 160 newly diagnosed non-Hodgkin’s lymphoma patients who received the R-CHOP regimen at the Sun Yat Sen University Cancer Center from January 2016 to December 2020, with a minimum follow-up period of approximately 5 years. The blood concentration of rituximab was detected by enzyme-linked immunosorbent assay. MS4A1 tagSNPs were selected by Haploview4.2 software, including rs1051461, rs17155034, rs4939364, and rs10501385. The genotype of MS4A1 was detected by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Univariate linear regression analysis was employed to examine the correlation between various factors(demographic, clinical, and genotypic variables) in patients and the steady-state trough concentration of rituximab during the first course of treatment, followed by multivariate linear regression analysis. Kaplan-Meier curves were drawn to evaluate progression-free survival (PFS) and overall survival (OS). Using MS4A1 genotype and tumor stage as independent variables, Cox regression model was employed to evaluate the factors influencing patient prognosis. RESULTS The blood concentration of rituximab in MS4A1 rs10501385 CC carriers was 15.20 μg/mL,which was significantly lower than 21.95 μg/mL in AA+AC carriers (P<0.05). The multivariate linear regression model incorporating tumor stage and MS4A1 rs10501385 polymorphism explained 7.3% of the interindividual variability in rituximab concentrations. Compared with MS4A1 rs1051461 CC carriers, CT+TT carriers had significantly prolonged PFS and OS (P<0.05). The Cox proportional hazards regression model showed that the MS4A1 rs1051461 CC genotype (HR=4.406, 95%CI:1.743-11.137, P<0.05) and tumor Ⅲ&Ⅳ (HR=3.233, 95%CI: 1.413-7.399, P<0.05) were independent risk factors for PFS. CONCLUSIONS The tumor staging and MS4A1 rs10501385 polymorphism are key influencing factors for blood concentration of rituximab, and MS4A1 rs1051461 polymorphism significantly affects PFS in non-Hodgkin’s lymphoma patients.
8.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
9.The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue
Lu-Lu GUAN ; Bo-Te QI ; Du-Shuo FENG ; Jing-Wang TAN ; Meng CAO ; Yu ZOU
Progress in Biochemistry and Biophysics 2025;52(6):1321-1336
Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ‑aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue.
10.Disease burden of chronic obstructive pulmonary disease in Zhejiang Province from 1990 to 2021
ZHOU Xiaoyan ; GONG Weiwei ; PAN Jin ; DAI Pinyuan ; GUAN Yunqi ; WANG Hao ; LI Na ; LU Feng ; ZHONG Jieming
Journal of Preventive Medicine 2025;37(8):757-761
Objective:
To analyze the disease burden of chronic obstructive pulmonary disease (COPD) and changes in its risk factors among residents in Zhejiang Province from 1990 to 2021, so as to identify key priorities for COPD prevention and control.
Methods:
Data on COPD mortality and disability-adjusted life years (DALY) for residents in Zhejiang Province from 1990 to 2021 were collected from the Global Burden of Disease (GBD) 2021 database. Standardized mortality and standardized DALY rate were calculated using the GBD 2021 world population standard structure. Premature mortality was computed via the life table method. The average annual percent change (AAPC) was applied to analyze trends in COPD mortality, DALY rate, and premature mortality. Changes in deaths of COPD risk factors were evaluated using population attributable fraction (PAF).
Results:
From 1990 to 2021, the standardized COPD mortality in Zhejiang Province decreased from 272.40/100 000 to 70.56/100 000 (AAPC=-4.395%), and the standardized DALY rate declined from 4 167.37/100 000 to 1 071.89/100 000 (AAPC=-4.396%). Similar downward trends were observed in both males (AAPC=-3.933%, -4.173%) and females (AAPC=-4.785%, -4.480%), all P<0.05. Crude mortality and DALY rates increased with age, and the crude mortality and DALY rates of various age groups in Zhejiang Province showed decreasing trends from 1990 to 2021 (all P<0.05). The premature mortality declined from 4.37% to 0.60% from 1990 to 2021 (AAPC=- 6.206%), with consistent trends across males and females (AAPC=- 6.144%, - 6.379%, all P<0.05). From 1990 to 2021, particulate matter pollution showed the largest reduction in PAF (- 56.76%), while ambient ozone pollution had the largest increase (103.07%) in Zhejiang Province. By 2021, smoking became the leading risk factor for deaths of COPD (PAF=43.32%).
Conclusions
The standardized mortality, standardized DALY rate, and premature mortality for COPD show consistent declining trends in Zhejiang Province from 1990 to 2021. However, risk factors such as smoking and ambient ozone pollution require intensified focus to further reduce disease burden of COPD.


Result Analysis
Print
Save
E-mail