1.Increased Tertiary Lymphoid Structures are Associated with Exaggerated Lung Tissue Damage in Smokers with Pulmonary Tuberculosis.
Yue ZHANG ; Liang LI ; Zi Kang SHENG ; Ya Fei RAO ; Xiang ZHU ; Yu PANG ; Meng Qiu GAO ; Xiao Yan GAI ; Yong Chang SUN
Biomedical and Environmental Sciences 2025;38(7):810-818
OBJECTIVE:
Cigarette smoking exacerbates the progression of pulmonary tuberculosis (TB). The role of tertiary lymphoid structures (TLS) in chronic lung diseases has gained attention; however, it remains unclear whether smoking-exacerbated lung damage in TB is associated with TLS. This study aimed to analyze the characteristics of pulmonary TLS in smokers with TB and to explore the possible role of TLS in smoking-related lung injury in TB.
METHODS:
Lung tissues from 36 male patients (18 smokers and 18 non-smokers) who underwent surgical resection for pulmonary TB were included in this study. Pathological and immunohistological analyses were conducted to evaluate the quantity of TLS, and chest computed tomography (CT) was used to assess the severity of lung lesions. The correlation between the TLS quantity and TB lesion severity scores was analyzed. The immune cells and chemokines involved in TLS formation were also evaluated and compared between smokers and non-smokers.
RESULTS:
Smoker patients with TB had significantly higher TLS than non-smokers ( P < 0.001). The TLS quantity in both the lung parenchyma and peribronchial regions correlated with TB lesion severity on chest CT (parenchyma: r = 0.5767; peribronchial: r = 0.7373; both P < 0.001). Immunohistochemical analysis showed increased B cells, T cells, and C-X-C motif chemokine ligand 13 (CXCL13) expression in smoker patients with TB ( P < 0.001).
CONCLUSION
Smoker TB patients exhibited increased pulmonary TLS, which was associated with exacerbated lung lesions on chest CT, suggesting that cigarette smoking may exacerbate lung damage by promoting TLS formation.
Humans
;
Male
;
Tuberculosis, Pulmonary/immunology*
;
Middle Aged
;
Tertiary Lymphoid Structures/pathology*
;
Adult
;
Lung/pathology*
;
Smoking/adverse effects*
;
Smokers
;
Aged
;
Tomography, X-Ray Computed
2.Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen.
Fei LI ; Yuxi HOU ; Ben RAO ; Xiaoyan LIU ; Yaping WANG ; Yimin QIU
Chinese Journal of Biotechnology 2025;41(4):1573-1587
Collagen, a vital matrix protein for various tissue and functions in animals, is widely applied in biomaterials. In type Ⅰ collagen, missense mutations of glycine (Gly) in the Gly-Xaa-Yaa triplet of the triple helix are a major cause of osteogenesis imperfecta (OI). Clinical manifestations exhibit marked heterogeneity, spanning a broad disease spectrum from mild skeletal fragility (Type Ⅰ) to severe limb deformities (Type Ⅲ) and perinatal lethal forms (Type Ⅱ). This study utilized recombinant collagen as a model to further elucidate whether Gly→Ala/Val mutations at the N-terminus of the integrin-binding sequence GFPGER affect collagen structure and function, and to explore the underlying mechanisms by which missense mutations impact the biological function of collagen. By introducing Ala and Val substitutions at seven Gly positions N-terminal to the GFPGER sequence, we systematically assessed the effects of these amino acid replacements on the triple-helical structure, thermal stability, integrin-binding ability, and cell adhesion of recombinant collagen. All constructs formed a stable triple-helix structure, with slightly compromised thermal stability. Gly→Val substitutions increased the susceptibility of recombinant collagen to trypsin, which suggested local conformational perturbations in the triple helix. In addition, Gly→Val substitutions significantly reduced the integrin-binding affinity and decreased HT1080 cell adhesion, with the effects stronger than Gly→Ala substitutions. Compared with Gly→Ala substitutions, substitution of Gly with the larger residue Val had enhanced negative effects on the structure and function of recombinant collagen. These findings provide new insights into the molecular mechanisms of osteogenesis imperfecta and offer theoretical references and experimental foundations for the design of collagen sequences and the development of collagen-based biomaterials.
Recombinant Proteins/biosynthesis*
;
Glycine/genetics*
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Integrins/metabolism*
;
Collagen/metabolism*
;
Collagen Type I/metabolism*
;
Amino Acid Substitution
;
Mutation
;
Mutation, Missense
3.Whole-cell transformation for the synthesis of tyrosine by a multi-enzyme cascade.
Fei YANG ; Yue WANG ; Xuanping SHI ; Jiajia YOU ; Minglong SHAO ; Meijuan XU ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3537-3552
L-tyrosine is one of the 20 amino acids that make up proteins and is an essential amino acid for mammals, often used as a nutritional supplement. The conventional methods for synthesizing L-tyrosine have some problems such as the production of many by-products, high requirements for production conditions, and environmental pollution. In this study, we designed and constructed a multi-enzyme cascade for the synthesis of L-tyrosine with alanine, glutamate, ammonium chloride, and phenol as substrates. Initially, the sources of glutamate oxidase, alanine aminotransferase, and tyrosine phenol lyase were screened and analyzed, which was followed by the identification of the rate-limiting enzyme in the reaction process. A colorimetric screening method was established, and the rate-limiting enzyme DbAlaA was engineered to enhance its activity by 40.0%. Subsequently, the reaction conditions, including temperature, pH, cell concentration, and surfactant and coenzyme dosages, were optimized. After optimization, the yield of L-tyrosine reached 9.93 g/L, with a alanine conversion rate of 54.90%. Finally, a feed-batch fermentation strategy was adopted, and the yield of L-tyrosine reached 56.07 g/L after 24 h, with a alanine conversion rate of 65.22%. This study provides a reference for the whole-cell catalytic synthesis of L-tyrosine and its industrialization.
Tyrosine/biosynthesis*
;
Escherichia coli/metabolism*
;
Tyrosine Phenol-Lyase/genetics*
;
Multienzyme Complexes/metabolism*
;
Fermentation
4.Application practice of 6S management of delicate instruments in central supply sterilization depart-ment
Wei WAN ; Fei WU ; Huangquan JIANG ; Dongxia RAO
Modern Hospital 2024;24(9):1373-1376,1380
Objective Analysis of the application effect after using 6S management of delicate instruments in Central Supply Sterilization Department.Methods 6S management's preliminary stage from December 2022 to December 2023,then created a departmental 6S management team and organized a mobilization meeting.Formulated specific implementation steps for 6S management,accepted on-site inspection of 6S management quality by the nursing department and self inspection of Central Supply Sterilization Department quarterly,compared the qualification rate of all instruments packaging and sterille goods supply quarterly,and the timely supply rate of emergency reprocessing instruments,the difference before and after 6S management was statistically significant(P<0.05).Results The on-site inspection of 6S management quality by the nursing department found that the"seiton"in the first quarter,the"safety"of manual cleaning of employees in the second quarter,the"seiso"in the third quarter,the"safety"of on-site interview in the fourth quarter,and the quality of 6S management in the auxiliary area were quali-fied were unqualified.The qualification rate of all instruments packaging were higher than before using 6S management in the first,second,third,fourth quarters(P<0.05),and the qualification rate of sterille goods supply were higher than before using 6S management in the first,second,fourth quarters(P<0.05),and the timely supply rate of emergency reprocessing instru-ments were higher than before using 6S management in the second,third,fourth quarters(P<0.05).Conclusion 6S manage-ment can improved the key link quality and identified various problems of delicate instrument management in Central Supply Steri-lization Department,among which seiri,seiton,seiso,seiketsu is the focus of daily management.
5.Progress in the immunometabolism in the regulation of macrophage function in sepsis.
Yingying LU ; Yan BAI ; Fei LI ; Zhuqing RAO
Chinese Critical Care Medicine 2024;36(12):1321-1324
Macrophages are widely distributed in peripheral blood, lungs, liver, brain, kidneys, skin, testes, vascular endothelial cells, and other parts of the body. As sentinel cells of innate immunity, they play an important role in the occurrence and development of sepsis. Recent research in immune metabolism has revealed the complicated relationship between specific metabolic pathways of macrophages and their phenotype and function in sepsis. During the pro-inflammatory phase of sepsis, macrophages are characterized by glycolysis, while in the immunosuppressive phase, they rely more on mitochondrial oxidative phosphorylation (OXPHOS). Hence, this review describes how macrophages metabolism related signaling pathways, molecules, enzymes and metabolic intermediates determine their phenotype and function to find critical targets which regulate the body immune status in sepsis.
Sepsis/pathology*
;
Macrophages/pathology*
;
Humans
;
Inflammation/pathology*
;
Signal Transduction
6.Experimental study of cardioprotective effects of Cinnamomi Ramulus and Cinnamomi Cortex formula granules on myocardial ischemia/reperfusion injury in rats based on efficacy of "warming and coordinating heart Yang".
Fei LUAN ; Zi-Qin LEI ; Li-Xia PENG ; Zhi-Li RAO ; Ruo-Cong YANG ; Nan ZENG
China Journal of Chinese Materia Medica 2023;48(3):725-735
This study aimed to parallelly investigate the cardioprotective activity of Cinnamomi Ramulus formula granules(CRFG) and Cinnamomi Cortex formula granules(CCFG) against acute myocardial ischemia/reperfusion injury(MI/RI) and the underlying mechanism based on the efficacy of "warming and coordinating the heart Yang". Ninety male SD rats were randomly divided into a sham group, a model group, CRFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, and CCFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, with 15 rats in each group. The sham group and the model group were given equal volumes of normal saline by gavage. Before modeling, the drug was given by gavage once a day for 7 consecutive days. One hour after the last administration, the MI/RI rat model was established by ligating the left anterior descending artery(LAD) for 30 min ischemia followed by 2 h reperfusion except the sham group. The sham group underwent the same procedures without LAD ligation. Heart function, cardiac infarct size, cardiac patho-logy, cardiomyocyte apoptosis, cardiac injury enzymes, and inflammatory cytokines were determined to assess the protective effects of CRFG and CCFG against MI/RI. The gene expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3(NLRP3) inflammasome, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate specific proteinase-1(caspase-1), Gasdermin-D(GSDMD), interleukin-1β(IL-1β), and interleukin-18(IL-18) were determined by real-time quantitative polymerase chain reaction(RT-PCR). The protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD were determined by Western blot. The results showed that both CRFG and CCFG pretreatments significantly improved cardiac function, decreased the cardiac infarct size, inhibited cardiomyocyte apoptosis, and reduced the content of lactic dehydrogenase(LDH), creatine kinase MB isoenzyme(CK-MB), aspartate transaminase(AST), and cardiac troponin Ⅰ(cTnⅠ). In addition, CRFG and CCFG pretreatments significantly decreased the levels of IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) in serum. RT-PCR results showed that CRFG and CCFG pretreatment down-regulated the mRNA expression levels of NLRP3, caspase-1, ASC, and downstream pyroptosis-related effector substances including GSDMD, IL-18, and IL-1β in cardiac tissues. Western blot revealed that CRFG and CCFG pretreatments significantly decreased the protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD in cardiac tissues. In conclusion, CRFG and CCFG pretreatments have obvious cardioprotective effects on MI/RI in rats, and the under-lying mechanism may be related to the inhibition of NLRP3/caspase-1/GSDMD signaling pathway to reduce the cardiac inflammatory response.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Interleukin-18
;
Myocardial Reperfusion Injury
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Tumor Necrosis Factor-alpha
;
Myocardial Infarction
;
Caspase 1
7. METTL3-mediated m6A modification involved in electrical remodeling of atrial cardiomyocytes under high hydrostatic pressure
Pan-Yue LIU ; Fei-Fei XIAO ; Pan-Yue LIU ; Long ZENG ; Hai-Yin XIAO ; Fei-Fei XIAO ; Rui ZHU ; Hui YANG ; Su-Juan KUANG ; Chun-Yu DENG ; Fang RAO ; Wei WEI
Chinese Pharmacological Bulletin 2023;39(12):2258-2265
To investigate the regulation of N6- methyladenosine ( m6A ) modification on L-type calcium channels in atrial myocytes under high hydrostatic pressure, mediated by methyltransferase-like protein 3 ( METTL3 ). Methods C57BL/6J mice were randomly assigned to the control group and the hypertension group ( treated with continuous administration of angiotensin for four weeks ). Masson staining was used to observe the fibrosis of mouse atrial tissue, while dot blot assay and Western blot were used to detect the levels of m6A, METTL3, and Cavi1 2 in the atrial tissue. A high hydrostatic pressure model was constructed using the HL-1 cell line cultured in vitro, and METTL3 was intervened to observe changes in m6A expression levels, METTL3 and Cavi1 2 levels in cells,and action potential duration ( APD ) and L-type calcium current ( I
9.Mibefradil improves skeletal muscle mass, function and structure in obese mice.
Jiang Hao WU ; Yong Xin WU ; Yun Fei YANG ; Jing YU ; Rao FU ; Yue SUN ; Qian XIAO
Journal of Southern Medical University 2022;42(7):1032-1037
OBJECTIVE:
To observe the effect of mibefradil on skeletal muscle mass, function and structure in obese mice.
METHODS:
Fifteen 6-week-old C57BL/6 mice were randomized equally into normal diet group (control group), high-fat diet (HFD) group and high-fat diet +mibefradil intervention group (HFD +Mibe group). The grip strength of the mice was measured using an electronic grip strength meter, and the muscle content of the hindlimb was analyzed by X-ray absorptiometry (DXA). Triglyceride (TG) and total cholesterol (TC) levels of the mice were measured with GPO-PAP method. The cross-sectional area of the muscle fibers was observed with HE staining. The changes in the level of autophagy in the muscles were detected by Western blotting and immunofluorescence assay, and the activation of the Akt/mTOR signaling pathway was detected with Western blotting.
RESULTS:
Compared with those in the control group, the mice in HFD group had a significantly greater body weight, lower relative grip strength, smaller average cross sectional area of the muscle fibers, and a lower hindlimb muscle ratio (P < 0.05). Immunofluorescence assay revealed a homogenous distribution of LC3 emitting light red fluorescence in the cytoplasm in the muscle cells in HFD group and HFD+Mibe group, while bright spots of red fluorescence were detected in HFD group. In HFD group, the muscular tissues of the mice showed an increased expression level of LC3 II protein with lowered expressions of p62 protein and phosphorylated AKT and mTOR (P < 0.05). Mibefradil treatment significantly reduced body weight of the mice, lowered the expression level of p62 protein, and increased forelimb grip strength, hindlimb muscle ratio, cross-sectional area of the muscle fibers, and the expression levels of LC3 II protein and phosphorylated AKT and mTOR (P < 0.05).
CONCLUSION
Mibefradil treatment can moderate high-fat diet-induced weight gain and improve muscle mass and function in obese mice possibly by activating AKT/mTOR signal pathway to improve lipid metabolism and inhibit obesityinduced autophagy.
Animals
;
Body Weight
;
Diet, High-Fat
;
Mibefradil/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Obese
;
Muscle, Skeletal/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
10.Life History Recorded in the Vagino-cervical Microbiome Along with Multi-omes
Jie ZHUYE ; Chen CHEN ; Hao LILAN ; Li FEI ; Song LIJU ; Zhang XIAOWEI ; Zhu JIE ; Tian LIU ; Tong XIN ; Cai KAIYE ; Zhang ZHE ; Ju YANMEI ; Yu XINLEI ; Li YING ; Zhou HONGCHENG ; Lu HAORONG ; Qiu XUEMEI ; Li QIANG ; Liao YUNLI ; Zhou DONGSHENG ; Lian HENG ; Zuo YONG ; Chen XIAOMIN ; Rao WEIQIAO ; Ren YAN ; Wang YUAN ; Zi JIN ; Wang RONG ; Liu NA ; Wu JINGHUA ; Zhang WEI ; Liu XIAO ; Zong YANG ; Liu WEIBIN ; Xiao LIANG ; Hou YONG ; Xu XUN ; Yang HUANMING ; Wang JIAN ; Kristiansen KARSTEN ; Jia HUIJUE
Genomics, Proteomics & Bioinformatics 2022;20(2):304-321
The vagina contains at least a billion microbial cells,dominated by lactobacilli.Here we perform metagenomic shotgun sequencing on cervical and fecal samples from a cohort of 516 Chinese women of reproductive age,as well as cervical,fecal,and salivary samples from a second cohort of 632 women.Factors such as pregnancy history,delivery history,cesarean section,and breastfeeding were all more important than menstrual cycle in shaping the microbiome,and such information would be necessary before trying to interpret differences between vagino-cervical micro-biome data.Greater proportion of Bifidobacterium breve was seen with older age at sexual debut.The relative abundance of lactobacilli especially Lactobacillus crispatus was negatively associated with pregnancy history.Potential markers for lack of menstrual regularity,heavy flow,dysmenor-rhea,and contraceptives were also identified.Lactobacilli were rare during breastfeeding or post-menopause.Other features such as mood fluctuations and facial speckles could potentially be predicted from the vagino-cervical microbiome.Gut and salivary microbiomes,plasma vitamins,metals,amino acids,and hormones showed associations with the vagino-cervical microbiome.Our results offer an unprecedented glimpse into the microbiota of the female reproductive tract and call for international collaborations to better understand its long-term health impact other than in the settings of infection or pre-term birth.

Result Analysis
Print
Save
E-mail