1.Cost-effectiveness of angiographic quantitative flow ratio-guided coronary intervention: A multicenter, randomized, sham-controlled trial.
Yanyan ZHAO ; Changdong GUAN ; Yang WANG ; Zening JIN ; Bo YU ; Guosheng FU ; Yundai CHEN ; Lijun GUO ; Xinkai QU ; Yaojun ZHANG ; Kefei DOU ; Yongjian WU ; Weixian YANG ; Shengxian TU ; Javier ESCANED ; William F FEARON ; Shubin QIAO ; David J COHEN ; Harlan M KRUMHOLZ ; Bo XU ; Lei SONG
Chinese Medical Journal 2025;138(10):1186-1193
BACKGROUND:
The FAVOR (Comparison of Quantitative Flow Ratio Guided and Angiography Guided Percutaneous Intervention in Patients with Coronary Artery Disease) III China trial demonstrated that percutaneous coronary intervention (PCI) lesion selection using quantitative flow ratio (QFR) measurement, a novel angiography-based approach for estimating fractional flow reserve, improved two-year clinical outcomes compared with standard angiography guidance. This study aimed to assess the cost-effectiveness of QFR-guided PCI from the perspective of the current Chinese healthcare system.
METHODS:
This study is a pre-specified analysis of the FAVOR III China trial, which included 3825 patients randomized between December 25, 2018, and January 19, 2020, from 26 centers in China. Patients with stable or unstable angina pectoris or those ≥72 hours post-myocardial infarction who had at least one lesion with a diameter stenosis between 50% and 90% in a coronary artery with a ≥2.5 mm reference vessel diameter by visual assessment were randomized to a QFR-guided strategy or an angiography-guided strategy with 1:1 ratio. During the two-year follow-up, data were collected on clinical outcomes, quality-adjusted life-years (QALYs), estimated costs of index procedure hospitalization, outpatient cardiovascular medication use, and rehospitalization due to major adverse cardiac and cerebrovascular events (MACCE). The primary analysis calculated the incremental cost-effectiveness ratio (ICER) as the cost per MACCE avoided. An ICER of ¥10,000/MACCE event avoided was considered economically attractive in China.
RESULTS:
At two years, the QFR-guided group demonstrated a reduced rate of MACCE compared to the angiography-guided group (10.8% vs . 14.7%, P <0.01). Total two-year costs were similar between the groups (¥50,803 ± 21,121 vs . ¥50,685 ± 23,495, P = 0.87). The ICER for the QFR-guided strategy was ¥3055 per MACCE avoided, and the probability of QFR being economically attractive was 64% at a willingness-to-pay threshold of ¥10,000/MACCE avoided. Sensitivity analysis showed that QFR-guided PCI would become cost-saving if the cost of QFR were below ¥3682 (current cost: ¥3800). Cost-utility analysis yielded an ICER of ¥56,163 per QALY gained, with a 53% probability of being cost-effective at a willingness-to-pay threshold of ¥85,000 per QALY gained.
CONCLUSION:
In patients undergoing PCI, a QFR-guided strategy appears economically attractive compared to angiographic guidance from the perspective of the Chinese healthcare system.
TRIAL REGISTRATION
ClinicalTrials.gov , NCT03656848.
Humans
;
Cost-Benefit Analysis
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Angiography/methods*
;
Middle Aged
;
Aged
;
Coronary Artery Disease/surgery*
;
Quality-Adjusted Life Years
;
Fractional Flow Reserve, Myocardial/physiology*
2.Bone loss in patients with spinal cord injury: Incidence and influencing factors.
Min JIANG ; Jun-Wei ZHANG ; He-Hu TANG ; Yu-Fei MENG ; Zhen-Rong ZHANG ; Fang-Yong WANG ; Jin-Zhu BAI ; Shu-Jia LIU ; Zhen LYU ; Shi-Zheng CHEN ; Jie-Sheng LIU ; Jia-Xin FU
Chinese Journal of Traumatology 2025;28(6):477-484
PURPOSE:
To investigate the incidence and influencing factors of bone loss in patients with spinal cord injury (SCI).
METHODS:
A retrospective case-control study was conducted. Patients with SCI in our hospital from January 2019 to March 2023 were collected. According to the correlation between bone mineral density (BMD) at different sites, the patients were divided into the lumbar spine group and the hip joint group. According to the BMD value, the patients were divided into the normal bone mass group (t > -1.0 standard deviation) and the osteopenia group (t ≤ -1.0 standard deviation). The influencing factors accumulated as follows: gender, age, height, weight, cause of injury, injury segment, injury degree, time after injury, start time of rehabilitation, motor score, sensory score, spasticity, serum value of alkaline phosphatase, calcium, and phosphorus. The trend chart was drawn and the influencing factors were analyzed. SPSS 26.0 was used for statistical analysis. Correlation analysis was used to test the correlation between the BMD values of the lumbar spine and bilateral hips. Binary logistic regression analysis was used to explore the influencing factors of osteoporosis after SCI. p < 0.05 was considered statistically significant.
RESULTS:
The incidence of bone loss in patients with SCI was 66.3%. There was a low concordance between bone loss in the lumbar spine and the hip, and the hip was particularly susceptible to bone loss after SCI, with an upward trend in incidence (36% - 82%). In this study, patients with SCI were divided into the lumbar spine group (n = 100) and the hip group (n = 185) according to the BMD values of different sites. Then, the lumbar spine group was divided into the normal bone mass group (n = 53) and the osteopenia group (n = 47); the hip joint group was divided into the normal bone mass group (n = 83) and the osteopenia group (n = 102). Of these, lumbar bone loss after SCI is correlated with gender and weight (p = 0.032 and < 0.001, respectively), and hip bone loss is correlated with gender, height, weight, and time since injury (p < 0.001, p = 0.015, 0.009, and 0.012, respectively).
CONCLUSIONS
The incidence of bone loss after SCI was high, especially in the hip. The incidence and influencing factors of bone loss in the lumbar spine and hip were different. Patients with SCI who are male, low height, lightweight, and long time after injury were more likely to have bone loss.
Humans
;
Spinal Cord Injuries/complications*
;
Male
;
Female
;
Retrospective Studies
;
Incidence
;
Adult
;
Bone Density
;
Middle Aged
;
Case-Control Studies
;
Osteoporosis/etiology*
;
Lumbar Vertebrae
;
Bone Diseases, Metabolic/etiology*
;
Aged
;
Risk Factors
3.Correlation of IGF2 levels with sperm quality, inflammation, and DNA damage in infertile patients.
Jing-Gen WU ; Cai-Ping ZHOU ; Wei-Wei GUI ; Zhong-Yan LIANG ; Feng-Bin ZHANG ; Ying-Ge FU ; Rui LI ; Fang WU ; Xi-Hua LIN
Asian Journal of Andrology 2025;27(2):204-210
Insulin-like growth factor 2 (IGF2) is a critical endocrine mediator implicated in male reproductive physiology. To investigate the correlation between IGF2 protein levels and various aspects of male infertility, specifically focusing on sperm quality, inflammation, and DNA damage, a cohort of 320 male participants was recruited from the Women's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between 1 st January 2024 and 1 st March 2024. The relationship between IGF2 protein concentrations and sperm parameters was assessed, and Spearman correlation and linear regression analysis were employed to evaluate the independent associations between IGF2 protein levels and risk factors for infertility. Enzyme-linked immunosorbent assay (ELISA) was used to measure IGF2 protein levels in seminal plasma, alongside markers of inflammation (tumor necrosis factor-alpha [TNF-α] and interleukin-1β [IL-1β]). The relationship between seminal plasma IGF2 protein levels and DNA damage marker phosphorylated histone H2AX (γ-H2AX) was also explored. Our findings reveal that IGF2 protein expression decreased notably in patients with asthenospermia and teratospermia. Correlation analysis revealed nuanced associations between IGF2 protein levels and specific sperm parameters, and low IGF2 protein concentrations correlated with increased inflammation and DNA damage in sperm. The observed correlations between IGF2 protein levels and specific sperm parameters, along with its connection to inflammation and DNA damage, underscore the importance of IGF2 in the broader context of male reproductive health. These findings lay the groundwork for future research and potential therapeutic interventions targeting IGF2-related pathways to enhance male fertility.
Humans
;
Male
;
Insulin-Like Growth Factor II/metabolism*
;
Infertility, Male/genetics*
;
DNA Damage
;
Adult
;
Inflammation/metabolism*
;
Spermatozoa/metabolism*
;
Semen Analysis
;
Semen/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Histones/metabolism*
;
Interleukin-1beta/metabolism*
4.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
5.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
6.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
7.Efficacy and Safety of Diagnostic-Driven Therapy for Invasive Fungal Disease in Patients with Myeloid Hematologic Malignancies.
Hui XIAO ; Fan WU ; Ying PAN ; Fu-Run AN ; Zhi-Min ZHAI
Journal of Experimental Hematology 2025;33(5):1524-1528
OBJECTIVE:
To investigate the efficacy and safety of diagnostic-driven therapy for invasive fungal disease(IFD) in patients with myeloid hematologic malignancies.
METHODS:
A retrospective analysis was conducted on the clinical data of 91 patients with myeloid hematologic malignancies who received diagnostic-driven therapy for IFD at the Second Hospital of Anhui Medical University from January 1, 2020 to December 31, 2023. The patients were divided into two groups based on medication: 44 patients in the caspofungin group and 47 patients in the voriconazole group. The clinical efficacy and adverse reactions of the two groups were compared and analyzed.
RESULTS:
The overall response rates in the caspofungin and voriconazole groups were 67.4% and 60.0%, respectively. Among patients who transitioned to diagnostic-driven therapy following prophylactic or empirical treatment with triazole antifungal agents, the response rate of the caspofungin group was significantly higher than that of the voriconazole group (76.9% vs 35.3%, P <0.05). A total of 9 patients in both groups experienced adverse reactions, and no grade III or higher adverse reactions occurred. The incidence of grade I-II adverse reactions in the caspofungin group was lower than in the voriconazole group (2.3% vs 17.0%, P <0.05).
CONCLUSION
In patients with myeloid hematologic malignancies, caspofungin and voriconazole demonstrate comparable clinical efficacy in diagnostic-driven therapy for IFD, but caspofungin is associated with a lower incidence of adverse reactions. Caspofungin exhibits significant effectiveness when initiating diagnostic-driven therapy after prophylactic or empirical treatment with broad-spectrum triazole antifungal agents.
Humans
;
Retrospective Studies
;
Hematologic Neoplasms/complications*
;
Antifungal Agents/therapeutic use*
;
Voriconazole/therapeutic use*
;
Caspofungin/therapeutic use*
;
Invasive Fungal Infections/diagnosis*
;
Male
;
Female
;
Mycoses/drug therapy*
;
Middle Aged
;
Treatment Outcome
;
Aged
;
Adult
8.Clinical implication of post-angioplasty quantitative flow ratio in the patients with coronary artery de novo lesions underwent drug-coated balloons treatment.
Yun-Hui ZHU ; Xu-Lin HONG ; Tian-Li HU ; Qian-Qian BIAN ; Yu-Fei CHEN ; Tian-Ping ZHOU ; Jing LI ; Guo-Sheng FU ; Wen-Bin ZHANG
Journal of Geriatric Cardiology 2025;22(3):332-343
BACKGROUND:
Quantitative flow ratio (QFR) holds significant value in guiding drug-coated balloon (DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.
METHODS:
Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events (MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.
RESULTS:
A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66 (11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group (QFR > 0.93) and 302 cases in the low QFR group (QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group (log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs (HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year (log-rank P = 0.016) and 1-5 years (log-rank P = 0.026).
CONCLUSIONS
In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values (> 0.93) were identified as an independent protective factor against adverse prognosis.
10.Identification of natural product-based drug combination (NPDC) using artificial intelligence.
Tianle NIU ; Yimiao ZHU ; Minjie MOU ; Tingting FU ; Hao YANG ; Huaicheng SUN ; Yuxuan LIU ; Feng ZHU ; Yang ZHANG ; Yanxing LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1377-1390
Natural product-based drug combinations (NPDCs) present distinctive advantages in treating complex diseases. While high-throughput screening (HTS) and conventional computational methods have partially accelerated synergistic drug combination discovery, their applications remain constrained by experimental data fragmentation, high costs, and extensive combinatorial space. Recent developments in artificial intelligence (AI), encompassing traditional machine learning and deep learning algorithms, have been extensively applied in NPDC identification. Through the integration of multi-source heterogeneous data and autonomous feature extraction, prediction accuracy has markedly improved, offering a robust technical approach for novel NPDC discovery. This review comprehensively examines recent advances in AI-driven NPDC prediction, presents relevant data resources and algorithmic frameworks, and evaluates current limitations and future prospects. AI methodologies are anticipated to substantially expedite NPDC discovery and inform experimental validation.
Artificial Intelligence
;
Biological Products/chemistry*
;
Humans
;
Drug Combinations
;
Drug Discovery/methods*
;
Machine Learning
;
Algorithms

Result Analysis
Print
Save
E-mail