1.Potential molecular mechanism of lncRNAs HOTAIR in malignant metastasis of esophageal cancer.
Kaijin LU ; Jiangfeng SHEN ; Guang HAN ; Quan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):236-244
Objective To elucidate the molecular mechanism by which exosomes (Exo) derived from cancer-associated fibroblasts (CAF) carrying HOX transcript antisense intergenic RNA (lncRNA HOTAIR) promote the metastasis of esophageal squamous cell carcinoma (ESCC). Methods CAFs were collected from tumor tissues, and non-cancer associated fibroblasts (NFs) were obtained from adjacent normal tissues at least 5 cm away from the tumor. Exosomes (CAFs-Exo and NFs-Exo) were isolated from conditioned media collected from CAFs or NFs. CAFs-Exo and NFs-Exo were incubated with human ESCC cell line TE-1 for 24 hours, and CCK-8 was used to determine the cell proliferation ability. Scratch test and Transwell test were performed to determine the cell migration and invasion ability. TE-1 cells were divided into the following two groups: NC group and KD group. The NC group and KD group were transfected with control siRNAs or siRNAs targeting HOTAIR respectively. The effects of HOTAIR knock-down on cell proliferation, migration, invasion and glycolysis were determined. Results CAFs-Exo promoted the proliferation of TE-1 cells more significantly than NFs-Exo. Compared with NFs-Exo group, the migration and invasion ability of TE-1 cells treated with CAFs-Exo were improved significantly. In addition, CAFs-Exo treatment inhibited the expression of E-cadherin and enhanced the expression of N-cadherin. The expression of HOTAIR in CAFs was significantly higher than that in NFs. Compared with NFs-Exo, the expression level of HOTAIR in CAFs-Exo increased significantly. Compared with NC group, the proliferation, migration and invasion of TE-1 cells in KD group decreased significantly. Compared with NC group, hexokinase 2 (HK2), extracellular acidification rate (ECAR) and ATP/ADP ratio of TE-1 cells in KD group decreased significantly. Conclusion HOTAIR, an exosome derived from CAFs, may be involved in metastasis and EMT by regulating glycolysis in ESCC cells.
Humans
;
RNA, Long Noncoding/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Esophageal Squamous Cell Carcinoma
;
Exosomes/genetics*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Glycolysis/genetics*
;
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Cadherins/genetics*
2.Progress in autoantibodies associated with esophageal squamous cell carcinoma.
Kaijuan JI ; Chao SUN ; Yan ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):363-371
The early diagnosis and precise treatment of esophageal squamous cell carcinoma (ESCC) hold significant clinical value in improving patient survival rate. Current diagnostic methods for early-stage ESCC primarily rely on invasive procedures and endoscopy, which can cause discomfort and financial burden for patients. Therefore, non-invasive biomarkers with high sensitivity and specificity present a more suitable alternative for early tumor diagnosis. Tumor associated autoantibodies (TAAb), identified as potential biomarkers, have considerable clinical implications for the early diagnosis, treatment monitoring, and prognosis assessment of ESCC. Here in we aim to summarize recent research on ESCC-related autoantibodies, including their background, types and development, analyze the potential of those autoantibodies in clinical diagnosis, treatment monitoring, and prognosis assessment, and also discuss the limitations of existing research and future directions. The goal is to provide a theoretical foundation for the early diagnosis and personalized treatment of ESCC.
Humans
;
Autoantibodies/immunology*
;
Esophageal Neoplasms/therapy*
;
Esophageal Squamous Cell Carcinoma/immunology*
;
Biomarkers, Tumor/immunology*
;
Prognosis
;
Carcinoma, Squamous Cell/diagnosis*
;
Animals
3.Research progress on radiotherapy and chemotherapy combined with immunotherapy for locally advanced esophageal squamous cell carcinoma.
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1047-1054
The standard treatment for locally advanced esophageal squamous cell carcinoma (ESCC) is neoadjuvant chemoradiotherapy, followed by surgery or definitive radiotherapy, but clinical results are unsatisfactory. In recent years, relevant studies have shown that immunotherapy combined with chemoradiotherapy has become a new treatment option for locally advanced ESCC. This article summarizes the current progress of chemoradiotherapy combined with immunotherapy in the treatment of locally advanced ESCC, and provides necessary theoretical basis for the comprehensive understanding and optimization of chemoradiotherapy combined with immunotherapy regimens for ESCC.
Humans
;
Esophageal Squamous Cell Carcinoma/therapy*
;
Esophageal Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Chemoradiotherapy/methods*
;
Combined Modality Therapy
4.Neuroendocrine carcinoma with significantly vacuolar nucleus at the esophagogastric junction: A case report.
Weihua HOU ; Shujie SONG ; Zhongyue SHI ; Lu LIU ; Mulan JIN
Journal of Peking University(Health Sciences) 2025;57(5):1005-1009
Neoplasms characterized by the expression of markers of neuroendocrine differentiation in neoplastic cells are defined as neuroendocrine neoplasms. A case of neuroendocrine carcinomas (NECs) with a small amount of papillary adenocarcinoma and significantly vacuolar nucleus at the esophagogastric junction was reported in this article. A 77-year-old male had dysphagia for one week. Endoscopy revealed early-stage esophagogastric junction carcinoma, and biopsy was diagnosed as poorly differentiated carcinoma. Endoscopic submucosal dissection was performed. Histologically, the papillary adenocarcinoma progresses from typically branching papillary structures (well-differentiated) to hyperplasia of the lining epithelium of the papilla to form a cribriform structure (moderately differentiated), to solid area lacking papillary structures (poorly differentiated). There was a continuous process, and during this process, the vacuoles in the nuclei of tumor cells showed progressive changes from mild to obvious and finally to significant vacuoles. The tumor was mainly composed of solid areas (about 95%), with single cell, large cell, round or oval to irregular nuclei, and significantly vacuolar nuclei, nuclei with larger vacuoles appeared in a loop, a few thin weakly basophilic or weakly eosinophilic fine particles could be seen in the vacuoles, and the vacuoles had rough edges. The nucleus chromatin at the outer edge of the vacuoles was fine particles, and mitosis was common (20-30/mm2), atypical mitosis could be seen, and nucleoli could be seen easily, the cytoplasm was weakly eosinophilic, and the boundaries of cells were unclear. The cells were arranged in a nested, trabecular, or diffuse sheet shape, with some arranged in a glandular tube shape. Tumor thrombus was found in the vein of submucosa; the interstitial tissue rich in capillaries within the tumor was accompanied by a large number of neutrophil infiltration. Immunohistochemical staining showed that the solid area of the tumor was positive for synaptophysin (Syn) and chromogranin A (CgA), while papillary adenocarcinoma was negative. Mucin 5AC (MUC5AC) was diffusely positive in papillary adenocarcinoma, while the proportion of positive cells in the solid area of the tumor was about 10% to 15%. In a word, this case showed the extreme situation of the vacuolar nuclear characteristics of NECs, extremely rare, in a sense, this case expanded the boundary of the morphological spectrum of NECs. Understanding the extreme vacuolar features of this nucleus is helpful to make a correct pathological diagnosis.
Humans
;
Male
;
Esophagogastric Junction/pathology*
;
Aged
;
Carcinoma, Neuroendocrine/pathology*
;
Vacuoles/pathology*
;
Esophageal Neoplasms/pathology*
;
Cell Nucleus/pathology*
;
Adenocarcinoma, Papillary/pathology*
;
Stomach Neoplasms/pathology*
5.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic
6.Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions.
Nuoya ZHOU ; Xianglei YUAN ; Wei LIU ; Qi LUO ; Ruide LIU ; Bing HU
Chinese Medical Journal 2025;138(12):1387-1398
Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Humans
;
Artificial Intelligence
;
Esophageal Squamous Cell Carcinoma/diagnosis*
;
Esophageal Neoplasms/diagnosis*
;
Precancerous Conditions/diagnosis*
7.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
8.Ag2Se nanoparticles suppress growth of murine esophageal cancer allograft in mice by eliminating Porphyromonas gingivalis.
Yali ZHAO ; Jiayi LI ; Bianli GU ; Pan CHEN ; Li ZHANG ; Xiaoman ZHANG ; Pingjuan YANG ; Linlin SHI ; Shegan GAO
Journal of Southern Medical University 2025;45(2):245-253
OBJECTIVES:
To investigate the efficacy of Ag2Se nanoparticles for eliminating intracellular Porphyromonas gingivalis (P. gingivalis) in esophageal cancer and examine the effect of P. gingivalis clearance on progression of esophageal cancer.
METHODS:
Ag2Se nanoparticles were synthesized via a chemical synthesis method. The effects of Ag2Se nanoparticles on P. gingivalis viability and colony-forming ability were assessed using fluorescence staining and colony formation assays. In a mouse model bearing subcutaneous murine esophageal cancer cell allograft with P. gingivalis infection, the effect of treatment with Ag2Se nanoparticles on the abundance of P. gingivalis in the tumor tissues was quantified using RNAscope in situ hybridization and quantitative polymerase chain reaction (qPCR), and the changes in tumor volume were monitored. The biosafety of Ag2Se nanoparticles was assessed by examining liver and kidney functions and pathological changes in the major organs of the mice.
RESULTS:
Transmission electron microscopy revealed that the synthesized Ag2Se nanoparticles were uniformly dispersed spherical particles with a diameter around 50 nm. In vitro experiments demonstrated that exposure to Ag2Se nanoparticles significantly reduced the viability and clonal proliferation capacity of P. gingivalis in a dose-dependent manner. In the tumor-bearing mice, treatment with Ag2Se nanoparticles significantly reduced the abundance of P. gingivalis in tumor tissues and suppressed tumor cell proliferation. No significant damages to the liver and kidney functions or the major organs were observed in Ag2Se nanoparticle-treated mice, demonstrating good biocompatibility of Ag2Se nanoparticles.
CONCLUSIONS
Ag2Se nanoparticles exhibit significant bactericidal and inhibitory effects against P. gingivalis, and can effectively eliminate intracellular P. gingivalis to suppress the growth of esophageal cancer allograft in mice, suggesting the potential of Ag2Se nanoparticles in the treatment of esophageal cancer.
Animals
;
Porphyromonas gingivalis/drug effects*
;
Mice
;
Esophageal Neoplasms/pathology*
;
Nanoparticles
;
Metal Nanoparticles
;
Bacteroidaceae Infections
;
Cell Line, Tumor
9.LINC00261 suppresses esophageal squamous cell carcinoma proliferation, invasion, and metastasis by targeting the miR-23a-3p/ZNF292 axis.
Yuan MI ; Xuzhe LI ; Zhanpeng WANG ; Yanjie LIU ; Chuntao SONG ; Lantao WANG ; Lei WANG
Journal of Southern Medical University 2025;45(10):2118-2125
OBJECTIVES:
To evaluate the regulatory effects of lncRNA LINC00261 on proliferation, invasion, and metastasis of esophageal squamous cell carcinoma (ESCC) cells.
METHODS:
The differentially expressed RNAs in ESCC were identified using the GSE149612 dataset from the GEO database. PCR was used to detect LINC00261 expression levels in clinical ESCC and normal esophageal tissue samples and in multiple ESCC cell lines and normal esophageal epithelial cells (HEEC). In ESCC cells, the effects of overexpression of LINC00261 on cell proliferation, invasion, metastasis and apoptosis were analyzed using CCK-8 assay, clone formation assay, Transwell assay and flow cytometry. The potential targets of LINC00261 were predicted using bioinformatics tools including ENCORI and verified using dual-luciferase reporter assay and Western blotting. The effects of LINC00261 overexpression on ESCC were confirmed in a nude mouse model bearing ESCC xenograft.
RESULTS:
Analysis of the GSE149612 dataset revealed significantly lower LINC00261 expression in ESCC tissues and cell lines. In cultured ESCC cells, LINC00261 overexpression markedly suppressed cell proliferation, invasion, and metastasis and promoted cell apoptosis. Dual-luciferase reporter assays confirmed that LINC00261 targets the miR-23a-3p/ZNF292 axis. In the tumor-bearing mouse model, LINC00261 overexpression significantly inhibited ESCC xenograft proliferation and metastasis.
CONCLUSIONS
LINC00261 suppresses ESCC progression by targeting the miR-23a-3p/ZNF292 axis, suggesting a potential therapeutic strategy for ESCC treatment.
Humans
;
MicroRNAs/genetics*
;
Cell Proliferation
;
Esophageal Neoplasms/genetics*
;
Animals
;
Esophageal Squamous Cell Carcinoma
;
Mice, Nude
;
RNA, Long Noncoding/genetics*
;
Cell Line, Tumor
;
Neoplasm Invasiveness
;
Mice
;
Carcinoma, Squamous Cell/genetics*
;
Apoptosis
;
Gene Expression Regulation, Neoplastic
;
Neoplasm Metastasis
10.Inhibition of BRD4 promotes migration of esophageal squamous cell carcinoma cells with low ACC1 expression.
Wenxin JIA ; Shuhua HUO ; Jiaping TANG ; Yuzhen LIU ; Baosheng ZHAO
Journal of Southern Medical University 2025;45(10):2258-2269
OBJECTIVES:
To investigate the effect of BRD4 inhibition on migration of esophageal squamous cell carcinoma (ESCC) cells with low acetyl-CoA carboxylase 1 (ACC1) expression.
METHODS:
ESCC cell lines with lentivirus-mediated ACC1 knockdown or transfected with a negative control sequence (shNC) were treated with DMSO, JQ1 (a BRD4 inhibitor), co-transfection with shNC-siBRD4 or siNC with additional DMSO or C646 (an ahistone acetyltransferase inhibitor) treatment, or JQ1combined with 3-MA (an autophagy inhibitor). BRD4 mRNA expression in the cells was detected using RT-qPCR. The changes in cell proliferation, migration, autophagy, and epithelial-mesenchymal transition (EMT) were examined with CCK8 assay, Transwell migration assay, and Western blotting.
RESULTS:
ACC1 knockdown did not significantly affect BRD4 expression in the cells but obviously increased their sensitivity to JQ1. JQ1 treatment at 1 and 2 μmol/L significantly inhibited ESCC cell proliferation, while JQ1 at 0.2 and 2 μmol/L promoted cell migration. The cells with ACC1 knockdown and JQ1 treatment showed increased expresisons of vimentin and Slug and decreased expression of E-cadherin. BRD4 knockdown promoted migration of ESCC cells, and co-transfection with shACC1 and siBRD4 resulted in increased vimentin and Slug expressions and decreased E-cadherin expression in the cells. C646 treatment of the co-transfected cells reduced acetylation levels, decreased vimentin and Slug expressions, and increased E-cadherin expression. Treatment with JQ1 alone obviously increased LC3A/B-II levels in the cells either with or without ACC1 knockdown. In the cells with ACC1 knockdown and JQ1 treatment, additional 3-MA treatment significantly decreased the expressions of vimentin, Slug and LC3A/B-II and increased the expression of E-cadherin.
CONCLUSIONS
BRD4 inhibition promotes autophagy of ESCC cells via a histone acetylation-dependent mechanism, thereby enhancing EMT and ultimately increasing cell migration driven by ACC1 deficiency.
Humans
;
Cell Movement
;
Transcription Factors/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Cell Cycle Proteins
;
Azepines/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Carcinoma, Squamous Cell/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Triazoles/pharmacology*
;
Nuclear Proteins/genetics*
;
Cell Proliferation
;
Acetyl-CoA Carboxylase/genetics*
;
Transfection
;
Autophagy
;
Bromodomain Containing Proteins

Result Analysis
Print
Save
E-mail