1.Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema.
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):99-106
OBJECTIVE:
To summarize the progress of the roles and mechanisms of various types of stem cell-based treatments and their combination therapies in both animal studies and clinical trials of lymphedema.
METHODS:
The literature on stem cell-based treatments for lymphedema in recent years at home and abroad was extensively reviewed, and the animal studies and clinical trials on different types of stem cells for lymphedema were summarized.
RESULTS:
Various types of stem cells have shown certain effects in animal studies and clinical trials on the treatment of lymphedema, mainly through local differentiation into lymphoid endothelial cells and paracrine cytokines with different functions. Current research focuses on two cell types, adipose derived stem cells and bone marrow mesenchymal stem cells, both of which have their own advantages and disadvantages, mainly reflected in the therapeutic effect of stem cells, the difficulty of obtaining stem cells and the content in vivo. In addition, stem cells can also play a synergistic role in combination with other treatments, such as conservative treatment, surgical intervention, cytokines, biological scaffolds, and so on. However, it is still limited to the basic research stage, and only a small number of studies have completed clinical trials.
CONCLUSION
Stem cells have great transformation potential in the treatment of lymphedema, but there is no unified standard in the selection of cell types, the amount of transplanted cells, and the timing of transplantation.
Animals
;
Endothelial Cells
;
Lymphedema/therapy*
;
Stem Cell Transplantation
;
Cytokines
2.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
3.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
4.Rosuvastatin acts on the lymphatic system to improve atherosclerosis.
Zi Qi SONG ; Jun Xian SONG ; Yu Xia CUI ; Su Fang LI ; Hong CHEN
Chinese Journal of Cardiology 2023;51(3):288-295
Objective: To investigate whether rosuvastatin acts on lymphatic system and influences lymphatic system-mediated reverse cholesterol transport to play an anti-atherosclerosis role. Methods: Forty-eight apolipoprotein E-/- mice fed a high fat diet were used to construct the atherosclerosis model. They were randomly divided into 4 groups with 12 rats in each group. They were treated with rosuvastatin, vascular endothelial growth factor-C (VEGF-C) and rosuvastatin+VEGF-C inhibitors as experimental group, and no intervention measures were given in control group. After 8 weeks, aortic plaque area, high density lipoprotein cholesterol (HDL-C) content in lymph fluid, the function of popliteal lymphatic drainage of peripheral Evans blue, and the ability of lymphatic system to transport peripheral cell membrane red fluorescent probes to label high-density lipoprotein (HDL) were detected. Subsequently, the effects of rosuvastatin on proliferation, migration and tubular function of lymphoendothelial cells and the expression of scavenger receptor class B type 1 (SR-B1) on lymphoendothelial cells at different concentrations were detected. Results: Compared with the control group, Rosuvastatin and VEGF-C could reduce the area of aortic atherosclerotic plaque (P<0.05). In addition to rosuvastatin plus VEGF-C inhibitor, the intra-aortic plaque area increased (P<0.05). Compared with the control group, Rosuvastatin could increase the content of HDL-C in lymphatic fluid (P<0.05), enhance the drainage function of lymphatic vessels, and enhance the capacity of HDL in the transport tissue fluid of lymphatic system. Compared with the control group, VEGF-C increased the content of HDL-C in mouse lymph fluid (P<0.01), enhanced the drainage function of popliteal lymphatic canal, and enhanced the ability of lymphatic system to transport HDL. With the addition of VEGF-C inhibitor on the basis of rosuvastatin, the content of HDL-C in lymph fluid was reduced, the drainage of popliteal lymphatic canal was interrupted, and the ability of lymphatic system to transport HDL was reduced. Western blotting showed that rosuvastatin increased the protein expression of SR-B1. Conclusion: Rosuvastatin can promote the proliferation, migration and tube formation of lymphatic endothelial cells. At the same time, SR-B1 expression on lymphatic endothelial cells is promoted, thus enhancing the lymphatic system mediated cholesterol reversal transport and playing the role of anti-atherosclerosis.
Rats
;
Mice
;
Animals
;
Rosuvastatin Calcium/therapeutic use*
;
Vascular Endothelial Growth Factor C
;
Endothelial Cells/metabolism*
;
Atherosclerosis/drug therapy*
;
Plaque, Atherosclerotic
;
Cholesterol, HDL
;
Lymphatic System/metabolism*
5.Preliminary Results of Single-cell Transcriptome Sequencing in Renal Arterial Lesions of Takayasu Arteritis.
Qing GAO ; Zhi-Yuan WU ; Hai-Yang LI ; Yong-Jun LI
Acta Academiae Medicinae Sinicae 2023;45(1):80-87
Objective To explore the preliminary application of single-cell RNA sequencing (scRNA-seq) in the renal arterial lesions in Takayasu arteritis (TA) patients. Methods This study included 2 TA patients with renal artery stenosis treated by bypass surgery in the Department of Vascular Surgery,Beijing Hospital.The obtained 2 renal artery samples were digested with two different protocols (GEXSCOPE kit and self-made digestion liquid) before scRNA-seq and bioinformatics analysis. Results A total of 2920 cells were obtained for further analysis.After unbiased cluster analysis,2 endothelial cell subsets,2 smooth muscle cell subsets,1 fibroblast subset,2 mononuclear macrophage subsets,1 T cell subset,and 1 undefined cell subset were identified.Among them,the two subsets of smooth muscle cells were contractile and secretory,respectively.The results of scRNA-seq indicated that enzymatic hydrolysis with GEXSCOPE kit produced a large number of endothelial cells (57.46%) and a small number of immune cells (13.21%).However,immune cells (34.64%) were dominant in the cells obtained by enzymatic hydrolysis with self-made digestive liquid. Conclusion scRNA-seq can be employed to explore the cellular heterogeneity of diseased vessels in TA patients.Different enzymatic digestion protocols may impact the proportion of different cells.
Humans
;
Takayasu Arteritis
;
Endothelial Cells
;
Transcriptome
;
Computational Biology
;
Fibroblasts
6.Research progress in targeting autophagy of traditional Chinese medicine and natural compounds to regulate atherosclerosis.
Man-Li ZHOU ; Yun-Feng YU ; Yan-Zhen ZHAO ; Xiao-Xin LUO ; Jia-le ZHU ; Yi-Lei HU ; Wei-Xiong JIAN
China Journal of Chinese Materia Medica 2023;48(2):311-320
Atherosclerosis(AS) is the common pathological basis of many ischemic cardiovascular diseases, and its formation process involves various aspects such as vascular endothelial injury and platelet activation. Vascular endothelial injury is the initiating factor of AS plaque. Monocytes are recruited to differentiate into macrophages at the damaged endothelial cells, which absorb oxidized low-density lipoprotein(ox-LDL) and slowly transform into foam cells. Smooth muscle cells(SMCs) proliferate and migrate continuously. As the only cell producing interstitial collagen fibers in the fibrous cap, SMCs largely determine whether the plaque ruptured or not. The amplifying inflammatory response during the formation of AS recruits platelets to adhere to the damaged area of vascular endothelium and stimulates excessive platelet aggregation. Autophagy activity is associated with vascular lesions and abnormal platelet activation, and excessive autophagy is considered to be a negative factor for plaque stability. Therefore, precise regulation of different types of vascular autophagy and platelet autophagy to treat AS may provide a new therapeutic perspective for the prevention and treatment of atherosclerotic ischemic cardiovascular disease. Currently, treatment strategies for AS still focus on lowering lipid levels with high-intensity statins, which often cause significant side effects. Therefore, the development of safer and more effective drugs and treatment modes is the focus of current research. Traditional Chinese medicine and natural compounds have the potential to treat AS by targeted autophagy, and have been playing an increasingly important role in the prevention and treatment of cardiovascular diseases in China. This paper summarizes the experimental studies on different vascular cell types and platelet autophagy in AS, and sums up the published research results on targeted autophagy of traditional Chinese medicine and natural plant compounds to regulate AS, providing new ideas for further research.
Humans
;
Endothelial Cells/metabolism*
;
Cardiovascular Diseases
;
Medicine, Chinese Traditional
;
Atherosclerosis/prevention & control*
;
Lipoproteins, LDL/metabolism*
;
Endothelium, Vascular
;
Plaque, Atherosclerotic
;
Autophagy
7.Effect of nanoparticles of different stiffness combined with menthol/curcumol on mechanical properties of bEnd.3 cells.
Zi-Shuo GUO ; Yi ZHANG ; Kai-Li YANG ; Di-Lei WANG ; Wan-Ling CHEN ; Xiao-Jing WANG ; Lin-Ying ZHONG ; Peng-Yue LI ; Shou-Ying DU
China Journal of Chinese Materia Medica 2023;48(2):390-398
This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.
Animals
;
Mice
;
Menthol/pharmacology*
;
Actins/metabolism*
;
Endothelial Cells/metabolism*
;
Nanoparticles/chemistry*
8.Preparation of two tanshinone Ⅱ_A-astragaloside Ⅳ co-loaded nano-delivery systems and in vitro antitumor activity comparison.
Xia LI ; Hong GUO ; Deng-Xuan MAO ; Yu-Ping LIU ; Yan CHEN
China Journal of Chinese Materia Medica 2023;48(3):672-680
This study screened excellent carriers for co-loading tanshinone Ⅱ_A(TSA) and astragaloside Ⅳ(As) to construct antitumor nano-drug delivery systems for TSA and As. TSA-As microemulsions(TSA-As-MEs) were prepared by water titration. TSA-As metal-organic framework(MOF) nano-delivery system was prepared by loading TSA and As in MOF by the hydrothermal method. Dynamic light scattering(DLS), transmission electron microscopy(TEM), and scanning electron microscopy(SEM) were used to characterize the physicochemical properties of the two preparations. Drug loading was determined by HPLC and the effects of the two preparations on the proliferation of vascular endothelial cells, T lymphocytes, and hepatocellular carcinoma cells were detected by the CCK-8 method. The results showed that the particle size, Zeta potential, and drug loading of TSA-As-MEs were(47.69±0.71) nm,(-14.70±0.49) mV, and(0.22±0.01)%, while those of TSA-As-MOF were(258.3±25.2) nm,(-42.30 ± 1.27) mV, and 15.35%±0.01%. TSA-As-MOF was superior to TSA-As-MEs in drug loading, which could inhibit the proliferation of bEnd.3 cells at a lower concentration and improve the proliferation ability of CTLL-2 cells significantly. Therefore, MOF was preferred as an excellent carrier for TSA and As co-loading.
Mice
;
Animals
;
Endothelial Cells
;
Abietanes
;
Cell Line
9.Protective mechanism of salvianolic acid B on blood vessels.
Chun-Kun YANG ; Qing-Quan PAN ; Zhuang TIAN ; Yan-Jun DU ; Feng-Qin SUN ; Jin LU ; Jun LI
China Journal of Chinese Materia Medica 2023;48(5):1176-1185
Salvianolic acid B(Sal B) is the main water-soluble component of Salvia miltiorrhiza Bunge. Studies have found that Sal B has a good protective effect on blood vessels. Sal B can protect endothelial cells by anti-oxidative stress, inducing autophagy, inhibiting endoplasmic reticulum stress(ERS), inhibiting endothelial inflammation and adhesion molecule expression, inhibiting endothelial cell permeability, anti-thrombosis, and other ways. In addition, Sal B can alleviate endothelial cell damage caused by high glucose(HG). For vascular smooth muscle cell(VSMC), Sal B can reduce the synthesis and secretion of inflammatory factors by inhibiting cyclooxygenase. It can also play a vasodilatory role by inhibiting Ca~(2+) influx. In addition, Sal B can inhibit VSMC proliferation and migration, thereby alleviating vascular stenosis. Sal B also inhibits lipid deposition in the subendothelium, inhibits macrophage conversion to foam cells, and reduces macrophage apoptosis, thereby reducing the volume of subendothelial lipid plaques. For some atherosclerosis(AS) complications, such as peripheral artery disease(PAD), Sal B can promote angiogenesis, thereby improving ischemia. It should be pointed out that the conclusions obtained from different experiments are not completely consistent, which needs further research. In addition, previous pharmacokinetics showed that Sal B was poorly absorbed by oral administration, and it was unstable in the stomach, with a large first-pass effect in the liver. Sal B had fast distribution and metabolism in vivo and short drug action time. These affect the bioavailability and biological effects of Sal B, and the development of clinically valuable Sal B non-injectable delivery systems remains a great challenge.
Endothelial Cells
;
Oxidative Stress
;
Benzofurans/pharmacology*
;
Lipids
10.Protective mechanism of tetramethylpyrazine on cardiovascular system.
Chun-Kun YANG ; Qing-Quan PAN ; Kui JI ; Chuan-Chao LUO ; Zhuang TIAN ; Hong-Yuan ZHOU ; Jun LI
China Journal of Chinese Materia Medica 2023;48(6):1446-1454
Tetramethylpyrazine is the main component of Ligusticum chuanxiong. Studies have found that tetramethylpyrazine has a good protective effect against cardiovascular diseases. In the heart, tetramethylpyrazine can reduce myocardial ischemia/reperfusion injury by inhibiting oxidative stress, regulating autophagy, and inhibiting cardiomyocyte apoptosis. Tetramethylpyrazine can also reduce the damage of cardiomyocytes caused by inflammation, relieve the fibrosis and hypertrophy of cardiomyocytes in infarcted myocardium, and inhibit the expansion of the cardiac cavity after myocardial infarction. In addition, tetramethylpyrazine also has a protective effect on the improvement of familial dilated cardiomyopathy. Besides, the mechanisms of tetramethylpyrazine on blood vessels are more abundant. It can inhibit endothelial cell apoptosis by reducing oxidative stress, maintain vascular endothelial function and homeostasis by inhibiting inflammation and glycocalyx degradation, and protect vascular endothelial cells by reducing iron overload. Tetramethylpyrazine also has a certain inhibitory effect on thrombosis. It can play an anti-thrombotic effect by reducing inflammatory factors and adhesion molecules, inhibiting platelet aggregation, and suppressing the expression of fibrinogen and von Willebrand factor. In addition, tetramethylpyrazine can also reduce the level of blood lipid in apolipoprotein E-deficient mice, inhibit the subcutaneous deposition of lipids, inhibit the transformation of macrophages into foam cells, and inhibit the proliferation and migration of vascular smooth muscle cells, thereby reducing the formation of atherosclerotic plaque. In combination with network pharmacology, the protective mechanism of tetramethylpyrazine on the cardiovascular system may be mainly achieved through the regulation of phosphatidylinositol 3 kinase/protein kinase B(PI3K/Akt), hypoxia-inducible factor 1(HIF-1), and mitogen-activated protein kinase(MAPK) pathways. Tetramethylpyrazine hydrochloride and sodium chloride injection has been approved for clinical application, but some adverse reactions have been found in clinical application, which need to be paid attention to.
Mice
;
Animals
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Myocardial Infarction
;
Myocardium/metabolism*
;
Myocytes, Cardiac
;
Thrombosis
;
Inflammation
;
Apoptosis

Result Analysis
Print
Save
E-mail