1.Mechanism of human embryonic stem cell-derived mesenchymal stem cells on alleviating brain injury after cardiopulmonary resuscitation in swine with cardiac arrest.
Feng GE ; Jiefeng XU ; Jinjiang ZHU ; Guangli CAO ; Xuguang WANG ; Meiya ZHOU ; Tiejiang CHEN ; Mao ZHANG
Chinese Critical Care Medicine 2025;37(2):133-139
OBJECTIVE:
To investigate the mechanism of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSC) in alleviating brain injury after resuscitation in swine with cardiac arrest (CA).
METHODS:
Twenty-nine healthy male large white swine were randomly divided into Sham group (n = 9), cardiopulmonary resuscitation (CPR) group (n = 10) and hESC-MSC group (n = 10). The Sham group only completed animal preparation. In CPR group and hESC-MSC group, the swine model of CA-CPR was established by inducing ventricular fibrillation for 10 minutes with electrical stimulation and CPR for 6 minutes. At 5 minutes after successful resuscitation, hESC-MSC 2.5×106/kg was injected via intravenous micropump within 1 hour in hESC-MSC group. Venous blood samples were collected before resuscitation and at 4, 8, 24, 48 and 72 hours of resuscitation. The levels of neuron specific enolase (NSE) and S100B protein (S100B) were detected by enzyme linked immunosorbent assay (ELISA). At 24, 48 and 72 hours of resuscitation, neurological deficit score (NDS) and cerebral performance category (CPC) were used to evaluate the neurological function of the animals. Three animals from each group were randomly selected and euthanized at 24, 48, and 72 hours of resuscitation, and the hippocampus tissues were quickly obtained. Immunofluorescence staining was used to detect the distribution of hESC-MSC in hippocampus. Immunohistochemical staining was used to detect the activation of astrocytes and microglia and the survival of neurons in the hippocampus. The degree of apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL).
RESULTS:
The serum NSE and S100B levels of brain injury markers in CPR group and hESC-MSC group were significantly higher than those in Sham group at 24 hours of resuscitation, and then gradually increased. The levels of NSE and S100B in serum at each time of resuscitation in hESC-MSC group were significantly lower than those in CPR group [NSE (μg/L): 20.69±3.62 vs. 28.95±3.48 at 4 hours, 27.04±5.56 vs. 48.59±9.22 at 72 hours; S100B (μg/L): 2.29±0.39 vs. 3.60±0.73 at 4 hours, 2.38±0.15 vs. 3.92±0.50 at 72 hours, all P < 0.05]. In terms of neurological function, compared with the Sham group, the NDS score and CPC score in the CPR group and hESC-MSC group increased significantly at 24 hours of resuscitation, and then gradually decreased. The NDS and CPC scores of hESC-MSC group were significantly lower than those of CPR group at 24 hours of resuscitation (NDS: 111.67±20.21 vs. 170.00±21.79, CPC: 2.33±0.29 vs. 3.00±0.00, both P < 0.05). The expression of hESC-MSC positive markers CD73, CD90 and CD105 in the hippocampus of hESC-MSC group at 24, 48 and 72 hours of resuscitation was observed under fluorescence microscope, indicating that hESC-MSC could homing to the damaged hippocampus. In addition, compared with Sham group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of CPR group were significantly increased, and the proportion of neurons was significantly decreased at 24, 48 and 72 hours of resuscitation. Compared with CPR group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of hESC-MSC group decreased and the proportion of neurons increased significantly at 24 hours of resuscitation [proportion of astrocytes: (14.33±1.00)% vs. (30.78±2.69)%, proportion of microglia: (12.00±0.88)% vs. (27.89±5.68)%, apoptotic index: (12.89±3.86)% vs. (52.33±7.77)%, proportion of neurons: (39.44±3.72)% vs. (28.33±1.53)%, all P < 0.05].
CONCLUSIONS
Application of hESC-MSC at the early stage of resuscitation can reduce the brain injury and neurological dysfunction after resuscitation in swine with CA. The mechanism may be related to the inhibition of immune cell activation, reduction of cell apoptosis and promotion of neuronal survival.
Animals
;
Heart Arrest/therapy*
;
Cardiopulmonary Resuscitation
;
Swine
;
Humans
;
Male
;
Human Embryonic Stem Cells/cytology*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Phosphopyruvate Hydratase/blood*
;
Brain Injuries/therapy*
;
S100 Calcium Binding Protein beta Subunit
;
Apoptosis
;
Disease Models, Animal
2.Stem cell therapy in pain medicine
Yong Hee HAN ; Kyung Hoon KIM ; Salahadin ABDI ; Tae Kyun KIM
The Korean Journal of Pain 2019;32(4):245-255
Stem cells are attracting attention as a key element in future medicine, satisfying the desire to live a healthier life with the possibility that they can regenerate tissue damaged or degenerated by disease or aging. Stem cells are defined as undifferentiated cells that have the ability to replicate and differentiate themselves into various tissues cells. Stem cells, commonly encountered in clinical or preclinical stages, are largely classified into embryonic, adult, and induced pluripotent stem cells. Recently, stem cell transplantation has been frequently applied to the treatment of pain as an alternative or promising approach for the treatment of severe osteoarthritis, neuropathic pain, and intractable musculoskeletal pain which do not respond to conventional medicine. The main idea of applying stem cells to neuropathic pain is based on the ability of stem cells to release neurotrophic factors, along with providing a cellular source for replacing the injured neural cells, making them ideal candidates for modulating and possibly reversing intractable neuropathic pain. Even though various differentiation capacities of stem cells are reported, there is not enough knowledge and technique to control the differentiation into desired tissues in vivo. Even though the use of stem cells is still in the very early stages of clinical use and raises complicated ethical problems, the future of stem cells therapies is very bright with the help of accumulating evidence and technology.
Adult
;
Adult Stem Cells
;
Aging
;
Cell Differentiation
;
Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells
;
Musculoskeletal Pain
;
Nerve Growth Factors
;
Neuralgia
;
Osteoarthritis
;
Stem Cell Transplantation
;
Stem Cells
3.Stem Cell-Based Therapies for Liver Diseases: An Overview and Update
Jie WANG ; Meiyan SUN ; Wei LIU ; Yan LI ; Miao LI
Tissue Engineering and Regenerative Medicine 2019;16(2):107-118
BACKGROUND: Liver disease is one of the top causes of death globally. Although liver transplantation is a very effective treatment strategy, the shortage of available donor organs, waiting list mortality, and high costs of surgery remain huge problems. Stem cells are undifferentiated cells that can differentiate into a variety of cell types. Scientists are exploring the possibilities of generating hepatocytes from stem cells as an alternative for the treatment of liver diseases. METHODS: In this review, we summarized the updated researches in the field of stem cell-based therapies for liver diseases as well as the current challenges and future expectations for a successful cell-based liver therapy. RESULTS: Several cell types have been investigated for liver regeneration, such as embryonic stem cells, induced pluripotent stem cells, liver stem cells, mesenchymal stem cells, and hematopoietic stem cells. In vitro and in vivo studies have demonstrated that stem cells are promising cell sources for the liver regeneration. CONCLUSION: Stem cell-based therapy could be a promising therapeutic method for patients with end-stage liver disease, which may alleviate the need for liver transplantation in the future.
Cause of Death
;
Embryonic Stem Cells
;
Hematopoietic Stem Cells
;
Hepatocytes
;
Humans
;
In Vitro Techniques
;
Induced Pluripotent Stem Cells
;
Liver Diseases
;
Liver Regeneration
;
Liver Transplantation
;
Liver
;
Mesenchymal Stromal Cells
;
Methods
;
Mortality
;
Stem Cells
;
Tissue Donors
;
Waiting Lists
4.Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease.
Xiao-Dong GENG ; Wei ZHENG ; Cong-Mei WU ; Shu-Qiang WANG ; Quan HONG ; Guang-Yan CAI ; Xiang-Mei CHEN ; Di WU
Chinese Medical Journal 2016;129(4):392-398
BACKGROUNDChronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD.
METHODSAdult male Sprague-Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining.
RESULTSIn vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs.
CONCLUSIONSIn a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury.
Animals ; Cell Proliferation ; Cryogels ; Disease Progression ; Embryonic Stem Cells ; transplantation ; Gelatin ; administration & dosage ; Kidney ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Rats ; Rats, Sprague-Dawley ; Renal Insufficiency, Chronic ; pathology ; therapy
5.Research progress of induced pluripotent stem cells in treatment of muscle atrophy.
Zhongkai YAO ; Chensong YANG ; Guixin SUN
Journal of Zhejiang University. Medical sciences 2016;45(2):147-151
Muscle atrophy caused by nerve injury is a common and difficult clinical problem. The development of stem cell researches has opened up a new way for the treatment of nerve injury-induced muscle atrophy. The induced pluripotent stem cells(iPSCs)can differentiate into various types of cells and have more advantages than embryonic stem cells (ESCs). After being transplanted into the damaged area, iPSCs are guided by neurogenic signals to the lesion sites, to repair the damaged nerve, promote generation of axon myelination, rebuild neural circuits and restore physiological function. Meanwhile, iPSCs can also differentiate into muscle cells and promote muscle tissue regeneration. Therefore, it would be possible to attenuate muscle atrophy caused by nerve injury with iPSCs treatment.
Animals
;
Disease Models, Animal
;
Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
transplantation
;
Muscular Atrophy
;
therapy
6.In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody.
Won Tae KIM ; Hyun Min LEE ; Min Kyu KIM ; Hong Seo CHOI ; Chun Jeih RYU
International Journal of Stem Cells 2016;9(2):264-270
BACKGROUND: The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. METHODS: Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. RESULTS: Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. CONCLUSION: 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation.
Adult
;
Animals
;
Cell Transplantation
;
Human Embryonic Stem Cells*
;
Humans*
;
Mice
;
Teratoma
;
Testis
;
Transplants
;
Tretinoin
7.Stem Cell Therapy for Neurodegenerative Diseases.
Jong Zin YEE ; Ki Wook OH ; Seung Hyun KIM
Hanyang Medical Reviews 2015;35(4):229-235
Neurodegenerative diseases are the hereditary and sporadic conditions which are characterized by progressive neuronal degeneration. Neurodegenerative diseases are emerging as the leading cause of death, disabilities, and a socioeconomic burden due to an increase in life expectancy. There are many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis, but we have no effective treatments or cures to halt the progression of any of these diseases. Stem cell-based therapy has become the alternative option to treat neurodegenerative diseases. There are several types of stem cells utilized; embryonic stem cells, induced pluripotent stem cells, and adult stem cell (mesenchymal stem cells and neural progenitor cells). In this review, we summarize recent advances in the treatments and the limitations of various stem cell technologies. Especially, we focus on clinical trials of stem cell therapies for major neurodegenerative diseases.
Adult Stem Cells
;
Alzheimer Disease
;
Amyotrophic Lateral Sclerosis
;
Cause of Death
;
Cell Transplantation
;
Embryonic Stem Cells
;
Huntington Disease
;
Induced Pluripotent Stem Cells
;
Life Expectancy
;
Multiple Sclerosis
;
Neurodegenerative Diseases*
;
Neurons
;
Parkinson Disease
;
Stem Cells*
8.Advanced Research on Stem Cell Therapy for Hepatic Diseases: Potential Implications of a Placenta-derived Mesenchymal Stem Cell-based Strategy.
Hanyang Medical Reviews 2015;35(4):207-214
The category of chronic liver diseases comprise one of the most common medical diagnoses worldwide. Currently, orthotopic liver transplantation is the only effective treatment for end-stage hepatic disease, but this procedure is associated with many problems, including donor scarcity, operative damage, high cost, risk of immune rejection and lifelong immunosuppressive treatments. Thus, the development of new therapies is highly desirable. Cell therapy with stem cells is increasingly being used to repair damaged tissue or to promote organ regeneration. Stem cells, which possess self-renewal activity as well as differentiation potential, can be categorized as embryonic stem cells (ESCs) or adult stem cells (ASCs), which include hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Recently, placenta-derived mesenchymal stem cells (PD-MSCs) have been reported, and they are attracting much interest in stem cell research for their multiple advantages: 1) no ethical concerns, 2) the ability to obtain abundant cell numbers, 3) multi-lineage differentiation potential, and 4) strong immunosuppressive properties. PD-MSCs differentiate into hepatocyte-like cells when exposed to hepatogenic differentiation-inducing conditions and PD-MSCs transplantation has been shown to enhance hepatic regeneration and/or survival in a rat hepatic failure model by suppressing the progression of fibrosis and apoptosis and activating autophagy. In this review, we will explain the characteristics of several kinds of PD-MSCs and discuss recent studies of the therapeutic potential of PD-MSCs in the repair of liver injury and their utility in regenerative medicine. Although many problems remain to be solved, many studies support the potential for human stem cell therapies, including PD-MSCs, as a promising new technology for the therapeutic regeneration of human liver intractably damaged due to chronic disease and/or toxic and environmental insult.
Adult Stem Cells
;
Animals
;
Apoptosis
;
Autophagy
;
Cell Count
;
Cell Transplantation
;
Cell- and Tissue-Based Therapy
;
Chronic Disease
;
Diagnosis
;
Embryonic Stem Cells
;
Fibrosis
;
Hematopoietic Stem Cells
;
Humans
;
Liver
;
Liver Diseases
;
Liver Failure
;
Liver Transplantation
;
Mesenchymal Stromal Cells
;
Rats
;
Regeneration
;
Regenerative Medicine
;
Stem Cell Research
;
Stem Cells*
;
Tissue Donors
9.Induced Pluripotent Stem Cells: Next Generation Stem Cells to Clinical Applications.
Jihyun CHA ; Sunhoo PARK ; Seung Bum LEE
Hanyang Medical Reviews 2015;35(4):190-195
Induced pluripotent stem cells (iPSC) are specially manipulated cells from somatic cells by the introduction of four factors that are reprogrammed. The properties of iPSC are similar to embryonic stem cells (ESC) characteristic of self-renewal and pluripotency. The technology of reprogramming somatic cells to iPSC enables the generation of patient-specific cells that can be used as powerful tools for drug screening, in vitro models for human disease and autologous transplantation. The iPSC technology provides a priceless resource for regenerative medicine but there are still changing obstacles over the safety of iPSC in avoiding induction of tumorigenicity and maintaining high purity of re-differentiated cells from iPSC to produce more functional cells for cell therapy. A variety of methods to overcome the limitation of iPSC application applied in the clinical setting have been developed. In this review, we summarize the recent progress in iPSC generation and differentiation techniques to facilitate clinical application of iPSC with future potential in regenerative medicine.
Autografts
;
Cell- and Tissue-Based Therapy
;
Drug Evaluation, Preclinical
;
Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells*
;
Regenerative Medicine
;
Stem Cells*
;
Transplantation, Autologous
10.Genetic approach to track neural cell fate decisions using human embryonic stem cells.
Xuemei FU ; Zhili RONG ; Shengyun ZHU ; Xiaocheng WANG ; Yang XU ; Blue B LAKE
Protein & Cell 2014;5(1):69-79
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry(+) NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.
Animals
;
Cell Differentiation
;
Cell Line
;
Embryonic Stem Cells
;
cytology
;
metabolism
;
transplantation
;
Gene Knock-In Techniques
;
Genes, Reporter
;
Homologous Recombination
;
Humans
;
Luminescent Proteins
;
genetics
;
Mice
;
Mice, SCID
;
Nestin
;
genetics
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Teratoma
;
pathology

Result Analysis
Print
Save
E-mail