1.Clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae.
Cui Fang SHEN ; Xiao Xiang ZHANG ; Chao Chi BAO
Chinese Journal of Preventive Medicine 2023;57(3):416-421
To explore the clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP), in order to provide reference for the prevention and treatment of CRKP infection. Retrospective analysis was performed on 510 clinical isolates of CRKP from January 2017 to December 2021, and strain identification and drug sensitivity tests were conducted by MALDI-TOF mass spectrometer and VITEK-2 Compact microbial drug sensitivity analyzer. The carbapenemase phenotype of CRKP strain was detected by carbapenemase inhibitor enhancement test. The CRKP strain was further categorized by immunochromogenic method and polymerase chain reaction (PCR) was used for gene detection. The results showed that 302 strains (59.2%) were derived from sputum, 127 strains (24.9%) from urine and 47 strains (9.2%) from blood. 231 (45.3%) were mainly distributed in intensive care, followed by 108 (21.2%) in respiratory medicine and 79 (15.5%) in neurosurgery. Drug susceptibility test result shows that the resistant rate of tigecycline increased from 1.0% in 2017 to 10.1% in 2021, the difference was statistically significant (χ2=14.444,P<0.05). The results of carbapenemase inhibitor enhancement test showed that 461 carbapenemase strains (90.4%) of 510 CRKP strains, including 450 serinase strains (88.2%), 9 metalloenzyme strains (1.8%), and 2 strains (0.4%) produced both serine and metalloenzyme. 49 strains (9.6%) did not produce enzymes. Further typing by immunochromogenic assay showed that 461 CRKP strains were KPC 450 (97.6%) and IMP 2 (0.4%). 7 NDM (1.5%); 2 strains of KPC+NDM (0.4%); PCR results were as follows: 450 strains of blaKPC (97.6%), 2 strains of blaIMP (0.4%), 7 strains of blaNDM (1.5%), and 2 strains of blaKPC+NDM (0.4%). In conclusion, CRKP strains mainly originated from sputum specimens and distributed in intensive care department, and the drug resistance characteristics were mainly KPC type in carbapenemase production. Clinical microbiology laboratory should strengthen the monitoring of CRKP strains, so as to provide reference for preventing CRKP infection and reducing the production of bacterial drug resistance.
Anti-Bacterial Agents/pharmacology*
;
Carbapenems/pharmacology*
;
Klebsiella pneumoniae/genetics*
;
Hospital Distribution Systems
;
Retrospective Studies
;
Microbial Sensitivity Tests
;
beta-Lactamases/genetics*
;
Bacterial Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
2.The past, present and future of tuberculosis treatment.
Kefan BI ; Dan CAO ; Cheng DING ; Shuihua LU ; Hongzhou LU ; Guangyu ZHANG ; Wenhong ZHANG ; Liang LI ; Kaijin XU ; Lanjuan LI ; Ying ZHANG
Journal of Zhejiang University. Medical sciences 2023;51(6):657-668
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Humans
;
Pyrazinamide/therapeutic use*
;
Isoniazid/therapeutic use*
;
Antitubercular Agents/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis/drug therapy*
;
Rifampin/therapeutic use*
;
Mutation
;
Drug Resistance, Multiple, Bacterial/genetics*
3.Distribution and Drug Resistance of Pathogens in Oral Mucositis Associated with Chemotherapy in Patients with Malignant Hematopathy.
Jin QIU ; Zi-Hao ZHANG ; Xiao-Ting LIU ; Cheng-Long LIU ; Si-Yi ZHU ; Zhao-Qu WEN
Journal of Experimental Hematology 2023;31(1):274-279
OBJECTIVE:
To analyze the distribution and drug resistance of pathogens in oral mucositis associated with chemotherapy in hospitalized patients with malignant hematopathy, so as to provide scientific evidences for rational selection of antibiotics and infection prevention and control.
METHODS:
From July 2020 to June 2022, 167 patients with malignant hematopathy were treated with chemical drugs in the Department of Hematology, Hainan Hospital, and secretions from oral mucosal infected wounds were collected. VITEK2 COMPECT automatic microbial identification system (BioMerieux, France) and bacterial susceptibility card (BioMerieux) were used for bacterial identification and drug susceptibility tests.
RESULTS:
A total of 352 strains of pathogens were isolated from 167 patients, among which 220 strains of Gram-positive bacteria, 118 strains of Gram-negative bacteria and 14 strains of fungi, accounted for 62.50%, 33.52% and 3.98%, respectively. The Gram-positive bacteria was mainly Staphylococcus and Streptococcus, while Gram-negative bacteria was mainly Klebsiella and Proteus. The resistance of main Gram-positive bacteria to vancomycin, ciprofloxacin and gentamicin was low, and the resistance to penicillin, cefuroxime, ampicillin, cefotaxime, erythromycin and levofloxacin was high. The main Gram-negative bacteria had low resistance to gentamicin, imipenem and penicillin, but high resistance to levofloxacin, cefotaxime, cefuroxime, ampicillin and vancomycin. The clinical data of oral mucositis patients with oral ulcer (severe) and without oral ulcer (mild) were compared, and it was found that there were statistically significant differences in poor oral hygiene, diabetes, sleep duration less than 8 hours per night between two groups (P<0.05).
CONCLUSION
Gram-positive bacteria is the main pathogen of oral mucositis in patients with malignant hematopathy after chemotherapy. It is sensitive to glycopeptide antibiotics and aminoglycosides antibiotics. Poor oral hygiene, diabetes and sleep duration less than 8 hours per night are risk factors for oral mucositis with oral ulcer (severe).
Humans
;
Vancomycin/therapeutic use*
;
Cefuroxime
;
Levofloxacin
;
Oral Ulcer/drug therapy*
;
Drug Resistance, Bacterial
;
Anti-Bacterial Agents/adverse effects*
;
Ampicillin
;
Penicillins
;
Cefotaxime
;
Gram-Positive Bacteria
;
Gram-Negative Bacteria
;
Gentamicins
;
Stomatitis/drug therapy*
4.Clinical features and antimicrobial resistance of invasive non-typhoid Salmonella infection in children at Xiamen.
Cai Hong WANG ; Mei Lian HUANG ; Zhi Qiang ZHUO ; Zi Xuan WANG ; Lei CHEN ; Yi Qing SONG ; Hui YU
Chinese Journal of Pediatrics 2023;61(8):685-689
Objective: To investigate the clinical characteristics, serogroups and antimicrobial resistance of invasive non-typhoid Salmonella infection in children at Xiamen. Methods: Retrospective cohort study. The clinical manifestations, treatment, prognosis, serogroups and antimicrobial resistance of 29 hospitalized children with invasive non-typhoid Salmonella infection confirmed by blood, cerebrospinal fluid, bone marrow and other sterile body fluids or deep pus culture at the Department of Infectious Diseases, the Department of Orthopedics and the Department of General Surgery in Xiamen Children's Hospital from January 2016 to December 2021 were analyzed. According to the clinical diagnosis criteria, the patients were divided into sepsis group and non-sepsis group (bacteremia and local suppurative infection). The inflammatory markers, serogroups distribution and drug resistance were compared between the two groups. Comparison between groups using Mann-Whitney U test and χ2 test. Results: Among the 29 cases, there were 17 males and 12 females, with an onset age of 14 (9, 25) months, and 10 cases (34%) of patients were younger than 1 year old, 15 cases (52%) under 1 to 3 years old, and 4 cases (14%) greater than or equal 3 years old. The onset time of 25 cases (86%) was from April to September. The diseases included 19 cases (66%) septicemia (2 of which were combined with suppurative meningitis), 10 cases (34%) non-sepsis group, including 7 cases bacteremia and 3 cases local suppurative infection (2 cases of osteomyelitis, 1 case of appendicitis with peritonitis). The clinical manifestations were fever in 29 cases (100%), diarrhea and abdominal pain in 18 cases (62%), cough and runny nose in 10 cases (34%). Eighteen cases (62%) were cured and 11 cases (38%) were improved by effective antibiotics treatment. C-reactive protein in sepsis group was significantly higher than that in non-sepsis group (25.2 (16.1, 56.4) vs. 3.4 (0.5, 7.5) mg/L, Z=-3.81, P<0.001).The serogroups of C, B and E were the most prevalent among non-typhoid Salmonella isolates, accounting for 10 cases (34%), 9 cases (31%) and 7 cases (24%) respectively. Antibacterial drug sensitivity test showed that the sensitivity rates of imipenem, ertapenem and piperaciratazobactam were all 100% (31/31), those of ceftazidime, ceftriaxone, and cefepime were 94% (29/31), 94% (29/31) and 97% (30/31) respectively. The drug resistance rates of ampicillin, ampicillin-sulbactam and trimethoprim-sulfamethoxazole were 51% (16/31), 48% (15/31) and 48% (15/31) respectively, those of cefazolin, cefotetan, tobramycin, gentamicin and amikacinwere all 100% (31/31). There were no significant differences in the drug resistance rates of ceftazidime, ceftriaxone, aztreonam, ampicillin-sulbactam, ampicillin, trimethoprim-sulfamethoxazole and ciprofloxacin between the sepsis group and the non-sepsis group (χ2=0.31,0.31,0.00,0.02,0.02,0.02,0.26, all P>0.05). Conclusions: Invasive non-typhoid Salmonella infection in children at Xiamen mainly occurred in infants younger than 3 years old.The main clinical manifestations are fever, abdominal pain and diarrhea. C-reactive protein can be served as the laboratory indicators for indicating sepsis. The third generation of cephalosporins is recommended as the first choice for treatment.
Infant
;
Male
;
Female
;
Child
;
Humans
;
Child, Preschool
;
Anti-Bacterial Agents/therapeutic use*
;
Ceftriaxone/therapeutic use*
;
Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use*
;
Ceftazidime/therapeutic use*
;
Retrospective Studies
;
C-Reactive Protein
;
Drug Resistance, Bacterial
;
Salmonella Infections/microbiology*
;
Ampicillin/therapeutic use*
;
Salmonella
;
Diarrhea/drug therapy*
;
Bacteremia
;
Abdominal Pain
;
Microbial Sensitivity Tests
5.Clinical features of post-neurosurgical bacterial meningitis in children.
Li Juan LUO ; Jing WANG ; Wen Juan CHEN ; Ya Juan ZHOU ; Yuan Jie ZHOU ; Yun Hai SONG ; Nan SHEN ; Qing CAO
Chinese Journal of Pediatrics 2023;61(8):690-694
Objective: To understand the characteristics of bacterial meningitis after pediatric neurosurgical procedures. Methods: This was a retrospective observational study. From January 2016 to December 2022, 64 children diagnosed with post-neurosurgical bacterial meningitis based on positive cerebrospinal fluid (CSF) culture in Department of Neurosurgery of Shanghai Children's Medical Center were selected as the study population. The clinical characteristics, onset time, routine biochemical indexes of cerebrospinal fluid before anti infection treatment, bacteriology characteristics and sensitivity to antibiotics of bacteria cultured from cerebrospinal fluid were analyzed. Based on the CSF culture results, the patients were divided into the Gram-positive bacteria infection group and the Gram-negative bacteria infection group. The clinical characteristics of the two groups were compared using t-tests or Wilcoxon rank-sum tests, and chi-square tests. Results: There were 64 children,42 boys and 22 girls, with onset age of 0.83 (0.50, 1.75) years. Seventy cases of post-neurosurgical bacterial meningitis occurred in the 64 children, of which 15 cases (21%) in spring, 23 cases (33%) in summer, 19 cases (27%) in autumn, and 13 cases (19%) in winter. The time of onset was 3.5 (1.0, 10.0) months after surgery; 15 cases (21%) occurred within the first month after the surgery, and 55 cases (79%) occurred after the first month. There were 38 cases (59%) showing obvious abnormal clinical manifestations, fever 36 cases (56%), vomiting 11 cases (17%). Forty-eight cases (69%) were caused by Gram-positive bacteria, with Staphylococcus epidermidis 24 cases; 22 cases (31%) were caused by Gram-negative bacteria, with Acinetobacter baumannii the prominent pathogen 7 cases. The Gram-positive bacterial infection was more common in summer than the Gram-negative bacterial infection (20 cases (42%) vs. 3 cases (14%), χ2=5.37, P=0.020), while the Gram-negative bacterial infection was more in autumn and within the first month after surgery than the Gram-positive bacterial infection (11 cases (50%) vs. 8 cases (17%), 15 cases (67%) vs. 5 cases (33%), χ2=8.48, 9.02; P=0.004, 0.003). Gram-positive bacteria resistant to vancomycin and Acinetobacter baumannii resistant to polymyxin were not found. However, Acinetobacter baumannii showed only 45% (10/22) susceptibility to carbapenem antibiotics. Conclusions: The clinical presentation of post-neurosurgical bacterial meningitis in children is atypical. Gram-positive bacteria are the main pathogens causing post-neurosurgical bacterial meningitis; Gram-negative bacterial meningitis are more likely to occur in autumn and within the first month after surgery. Acinetobacter baumannii has a high resistance rate to carbapenem antibiotics, which should be taken seriously.
Male
;
Female
;
Humans
;
Child
;
China/epidemiology*
;
Anti-Bacterial Agents/pharmacology*
;
Meningitis, Bacterial/diagnosis*
;
Gram-Negative Bacterial Infections/drug therapy*
;
Gram-Positive Bacteria
;
Gram-Positive Bacterial Infections/drug therapy*
;
Carbapenems
;
Retrospective Studies
;
Microbial Sensitivity Tests
;
Drug Resistance, Bacterial
6.Clinical and etiological characteristics of infectious vulvovaginitis in children in Zhejiang province from 2009 to 2019.
Hui Hui GAO ; Sun Yi WANG ; Yu Chen ZHANG ; Ming Ming ZHOU ; Chun Zhen HUA ; Chang Zheng YUAN ; Li Ying SUN
Chinese Journal of Pediatrics 2023;61(11):1024-1030
Objective: To explore the clinical characteristics, common pathogens in children with vulvovaginitis. Methods: This was a retrospective cases study. A total of 3 268 children with vulvovaginitis were enrolled, who visited the Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine from January 2009 to December 2019. Patients were divided into 3 groups according to the age of <7, 7-<10 and 10-18 years. Patients were also divided in to 4 groups according to the season of first visit. The pathogen distribution characteristics of infective vulvovaginitis were compared between the groups. Their clinical data were collected and then analyzed by χ2 test. Results: The were 3 268 girls aged (6.2±2.5) years. There were 1 728 cases (52.9%) aged <7 years, 875 cases (26.8%) aged 7-<10 years, and 665 cases (20.3%) aged 10-18 years. Of these cases, 2 253 cases (68.9%) were bacterial vulvovaginitis, 715 cases (21.9%) were fungal vulvovaginitis and 300 cases (9.2%) were vulvovaginitis infected with other pathogens. Bacterial culture of vaginal secretions was performed in 2 287 cases, and 2 287 strains (70.0%) of pathogens were detected, of which the top 5 pathogens were Streptococcus pyogenes (745 strains, 32.6%), Haemophilus influenzae (717 strains, 31.4%), Escherichia coli (292 strains, 12.8%), Staphylococcus aureus (222 strains, 9.7%) and Klebsiella pneumoniae (67 strains, 2.9%). Regarding different age groups, H.influenzae was the most common in children under 7 years of age (40.3%, 509/1 263), S.pyogenes (41.9%, 356/849) was predominantly in children aged 7 to 10 years, and E.coli was predominant in children aged 10 to 18 years (26.3%, 46/175). Susceptibility results showed that S.pyogenes was susceptible to penicillin G (610/610, 100.0%), ceftriaxone (525/525, 100.0%), and vancomycin (610/610, 100.0%); the resistance rates to erythromycin and clindamycin were 91.9% (501/545)and 90.7% (495/546), respectively. For H.influenzae, 32.5% (161/496) produced β-elactamase, and all strains were sensitive to meropenem (489/489, 100.0%) and levofloxacin (388/388, 100.0%), while 40.5% (202/499) were resistant to ampicillin. Among E.coli, all strains were sensitive to imipenem(100%, 175/175). The resistance rates of E.coli to levofloxacin and ceftriaxone were 29.1% (43/148) and 35.1% (59/168), respectively. A total of 48 strains of methicillin-resistant Staphylococcus aureus (MRSA) were isolated with a proportion of 28.3% (45/159) in 3 268 patients. The results of drug susceptibility test showed that all MRSA strains were sensitive to linezolid 100.0% (40/40), vancomycin (45/45, 100.0%), and tigecycline (36/36, 100.0%); the resistance rates of MRSA to penicillin G, erythromycin and clindamycin were 100% (45/45), 95.6% (43/45) and 88.9% (40/45), respectively. All methicillin-sensitive Staphylococcus aureus (MSSA) strains were sensitive to oxacillin (114/114, 100.0%), linezolid (94/94, 100.0%), vancomycin (114/114, 100.0%), and tigecycline (84/84, 100.0%); it's resistance rates to penicillin G, erythromycin and clindamycin were 78.1% (89/114), 59.7% (68/114) and 46.5% (53/114), respectively. The drug resistance rate of MSSA to penicillin G, erythromycin and clindamycin were lower than those of MRSA (χ²=11.71,19.74,23.95, respectively, all P<0.001). Conclusions: The age of consultation for pediatric infectious vulvovaginitis is mainly around 6 years. The most common pathogens are S.pyogenes, H.influenzae and Escherichia coli. Third generation cephalosporins can be used as the first choice of empirical anti-infection drugs. However, the results of drug susceptibility should be considered for targeted treatment.
Female
;
Adolescent
;
Child
;
Humans
;
Anti-Bacterial Agents/therapeutic use*
;
Vancomycin/therapeutic use*
;
Methicillin-Resistant Staphylococcus aureus
;
Clindamycin/therapeutic use*
;
Ceftriaxone/therapeutic use*
;
Tigecycline/therapeutic use*
;
Linezolid/therapeutic use*
;
Levofloxacin/therapeutic use*
;
Retrospective Studies
;
Microbial Sensitivity Tests
;
Staphylococcus aureus
;
Staphylococcal Infections/drug therapy*
;
Erythromycin/therapeutic use*
;
Methicillin
;
Penicillin G/therapeutic use*
;
Escherichia coli
;
Drug Resistance, Bacterial
7.Antimicrobial resistance and genomic characterization of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces of China in 2020.
Chang Wei WANG ; Yao BAI ; Shao Ting LI ; Zi Xin PENG ; Da Jin YANG ; Yin Ping DONG ; Jing XIAO ; Wei WANG ; Feng Qin LI
Chinese Journal of Preventive Medicine 2023;57(12):2086-2094
Objective: To understand the antimicrobial resistance and genome characteristics of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces in China in 2020. Methods: In 2020, 265 Campylobacter strains including 244 Campylobacter jejuni and 21 Campylobacter coli collected from retailed poultry meat samples in China were tested for antimicrobial resistance to 9 antimicrobial compounds by using the agar dilution method. Forty-two selected isolates were sent for whole genome sequencing and 38 high-quality genomes were analyzed for their antimicrobial resistance genes, virulence genes, sequence types and genetic diversity. Results: The resistance rates of Campylobacter isolates from poultry meats to tetracycline, nalidixic acid and ciprofloxacin were the highest (84%-100%), with 53.2% of the isolates showing multidrug resistance in this study. The resistance rates of C. coli to erythromycin, azithromycin, telithromycin, gentamicin and clindamycin were significantly higher than those of C. jejuni (P<0.05). The resistance genes conferring resistance to β-lactams (100%, 38/38), quinolones (94.7%, 36/38), tetracycline (81.6%, 31/38) and aminoglycosides (50%, 19/38) were the most frequently detected among 38 Campylobacter genomes. C. jejuni carried more virulence genes than C. coli. In total, 19 and 17 sequence types (ST) were obtained from 20 sequenced C. jejuni and 18 C. coli isolates, respectively, including 5 novel STs. The isolates showed a high genetic diversity based on their sequence types. Conclusion: The phenomenon of antimicrobial resistance in Campylobacter from poultry meat sources in China is relatively serious, and resistance and virulence genes are widely distributed in Campylobacter. There is genetic diversity in Campylobacter.
Humans
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Campylobacter/genetics*
;
Poultry
;
Drug Resistance, Bacterial/genetics*
;
Genomics
;
China
;
Tetracycline
8.Distribution and Drug Sensitivity Analysis of Pathogenic Bacteria Isolated from Patients in Hematology Department.
Li QIAN ; Wen-Ying XIA ; Fang NI ; Xiao-Hui ZHANG
Journal of Experimental Hematology 2023;31(2):568-574
OBJECTIVE:
To investigate the distribution and drug sensitivity of pathogenic bacteria isolated from patients in hematology department, in order to provide evidence for rational use of antibiotics in clinic.
METHODS:
The distribution of pathogenic bacteria and drug sensitivity data of patients in the hematology department of The First Affiliated Hospital of Nanjing Medical University from 2015 to 2020 were retrospectively analyzed, and the pathogens isolated from different specimen types were compared.
RESULTS:
A total of 2 029 strains of pathogenic bacteria were isolated from 1 501 patients in the hematology department from 2015 to 2020, and 62.2% of which were Gram-negative bacilli, mainly Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii. Gram-positive coccus accounted for 18.8%, mainly Coagulase-negative staphylococcus (CoNS) and Staphylococcus aureus. Fungi (17.4%) were mainly candida. The 2 029 strains were mainly isolated from respiratory tract (35.1%), blood (31.8%) and urine (19.2%) specimens. Gram-negative bacilli were the main pathogenic bacteria in different specimen types (>60%). K. pneumoniae, S. maltophilia and A. baumannii were the most common pathogens in respiratory specimens, E. coli, CoNS, K. pneumoniae and P. aeruginosa were common in blood samples, and E. coli and Enterococcus were most common in urine samples. Enterobacteriaceae had the highest susceptibility to amikacin and carbapenems (>90.0%), followed by piperacillin/tazobactam. P. aeruginosa strains had high sensitivity to antibiotics except aztreonam (<50.0%). The susceptibility of A. baumannii to multiple antibiotics was less than 70.0%. The antimicrobial resistance rates of E. coli and K. pneumoniae in respiratory tract specimens were higher than those in blood specimens and urine specimens.
CONCLUSION
Gram-negative bacilli are the main pathogenic bacteria isolated from patients in hematology department. The distribution of pathogens is different in different types of specimens, and the sensitivity of each strain to antibiotics is different. The rational use of antibiotics should be based on different parts of infection to prevent the occurrence of drug resistance.
Humans
;
Escherichia coli
;
Retrospective Studies
;
Bacteria
;
Anti-Bacterial Agents/therapeutic use*
;
Gram-Negative Bacteria
;
Drug Resistance
;
Pseudomonas aeruginosa
;
Hematology
9.A single-center study on the distribution and antibiotic resistance of pathogens causing bloodstream infection in patients with hematological malignancies.
Lin Jing CAI ; Xiao Lei WEI ; Yong Qiang WEI ; Xu Tao GUO ; Xue Jie JIANG ; Yu ZHANG ; Guo pan YU ; Min DAI ; Jie Yu YE ; Hong Sheng ZHOU ; Dan XU ; Fen HUANG ; Zhi Ping FAN ; Na XU ; Peng Cheng SHI ; Li XUAN ; Ru FENG ; Xiao Li LIU ; Jing SUN ; Qi Fa LIU
Chinese Journal of Hematology 2023;44(6):479-483
Objective: To study the incidence of bloodstream infections, pathogen distribution, and antibiotic resistance profile in patients with hematological malignancies. Methods: From January 2018 to December 2021, we retrospectively analyzed the clinical characteristics, pathogen distribution, and antibiotic resistance profiles of patients with malignant hematological diseases and bloodstream infections in the Department of Hematology, Nanfang Hospital, Southern Medical University. Results: A total of 582 incidences of bloodstream infections occurred in 22,717 inpatients. From 2018 to 2021, the incidence rates of bloodstream infections were 2.79%, 2.99%, 2.79%, and 2.02%, respectively. Five hundred ninety-nine types of bacteria were recovered from blood cultures, with 487 (81.3%) gram-negative bacteria, such as Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Eighty-one (13.5%) were gram-positive bacteria, primarily Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecium, whereas the remaining 31 (5.2%) were fungi. Enterobacteriaceae resistance to carbapenems, piperacillin/tazobactam, cefoperazone sodium/sulbactam, and tigecycline were 11.0%, 15.3%, 15.4%, and 3.3%, with a descending trend year on year. Non-fermenters tolerated piperacillin/tazobactam, cefoperazone sodium/sulbactam, and quinolones at 29.6%, 13.3%, and 21.7%, respectively. However, only two gram-positive bacteria isolates were shown to be resistant to glycopeptide antibiotics. Conclusions: Bloodstream pathogens in hematological malignancies were broadly dispersed, most of which were gram-negative bacteria. Antibiotic resistance rates vary greatly between species. Our research serves as a valuable resource for the selection of empirical antibiotics.
Humans
;
Bacteremia/epidemiology*
;
Cefoperazone
;
Sulbactam
;
Retrospective Studies
;
Drug Resistance, Bacterial
;
Microbial Sensitivity Tests
;
Hematologic Neoplasms
;
Sepsis
;
Anti-Bacterial Agents/pharmacology*
;
Gram-Negative Bacteria
;
Gram-Positive Bacteria
;
Piperacillin, Tazobactam Drug Combination
;
Escherichia coli
10.Drug resistance and genomic characteristics of Salmonella enterica serovar London from clinical and food sources in Hangzhou City from 2017 to 2021.
Zhi Bei ZHENG ; Hua YU ; Wei ZHENG ; Qi CHEN ; Xiu Qin LOU ; Xiao Dong LIU ; Hao Qiu WANG ; Jing Cao PAN
Chinese Journal of Preventive Medicine 2023;57(4):508-515
Objective: To analyze the drug resistance and genomic characteristics of Salmonella enterica serovar London isolated from clinical and food sources in Hangzhou City from 2017 to 2021. Methods: A total of 91 Salmonella enterica serovar London strains isolated from Hangzhou City from 2017 to 2021 were analyzed for drug susceptibility, pulsed field gel electrophoresis (PFGE) typing and whole genome sequencing. Multilocus sequence typing (MLST), core genome multilocus sequence typing (cgMLST) and detection of drug resistance genes were performed by using the sequencing data. Phylogenetic analysis was conducted to compare the 91 genomes from Hangzhou City with 347 genomes from public databases. Results: No significant difference in the drug resistance rate was observed between clinical strains and food strains to 18 drugs in Hangzhou City(all P>0.05), and the multidrug resistance (MDR) rate was 75.8% (69/91). Most strains were resistant to 7 drug classes simultaneously. One strain was resistant to Polymyxin E as well as positive for mcr-1.1, and 50.5% (46/91) of the strains were resistant to Azithromycin and were positive for mph(A). All 91 Salmonella enterica serovar London strains were ST155, which were subdivided into 44 molecular types by PFGE and 82 types by cgMLST. Phylogenetic analysis showed that most strains from Hangzhou City (83/91) were clustered together, and a small number of human isolates from Europe, North America and pork isolates from Hubei and Shenzhen were mixed in the cluster. Other strains from Hangzhou City (8/91) were closely related to strains from Europe, America and Southeast Asia. Strains isolated from pork were the most closely related to clinical strains. Conclusion: The epidemic of Salmonella enterica serovar London in Hangzhou City is mainly caused by the spread of ST155 strains, which is mainly transmitted locally. At the same time, cross-region transmission to Europe, North America, Southeast Asia, and other provinces and cities in China may also occur. There is no significant difference in the drug resistance rate between clinical strains and food strains, and a high level of MDR is found in the strains. Clinical infection of Salmonella enterica serovar London may be closely related to pork consumption in Hangzhou City.
Humans
;
Salmonella enterica/genetics*
;
Serogroup
;
Anti-Bacterial Agents/pharmacology*
;
Multilocus Sequence Typing
;
Cities
;
London
;
Clonidine
;
Phylogeny
;
Genomics
;
Drug Resistance
;
Electrophoresis, Gel, Pulsed-Field
;
Microbial Sensitivity Tests

Result Analysis
Print
Save
E-mail