1.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
CAI Dongxuan ; LI Yi ; WANG Lan ; ZHANG Yan ; LI Guangwen ; ZHANG Yumei
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):169-177
Objective:
To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts (HGFs) and to provide experimental evidence for surface modification of implant abutments.
Methods:
The samples were divided into an NC group (negative control, no other treatment on a smooth surface), an NM-1 group (nanomesh-1, electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage), and an NM-2 group (nanomesh-2, electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage). The surface morphologies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy (SEM). The surface hydrophilicities of the samples were measured with a contact angle measuring instrument. The proliferation of HGFs on the different samples were evaluated with CCK-8, and the expression of adhesion-related genes, including collagen Ⅰ (COL1A1), collagen Ⅲ (COL3A1), fibronectin 1 (FN1), focal adhesion kinase (FAK), vinculin (VCL), integrin α2 (ITGA2), and integrin β1 (ITGB1), on the different samples was measured with qRT-PCR. The expression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy (CLSM) after immunofluorescent staining. Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.
Results:
SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups, with grid diameters of approximately 30 nm for the NM-1 group and approximately 150 nm for the NM-2 group. Compared with that of the NC group, the water contact angles of the NM-1 group and NM-2 groups were significantly lower (P<0.000 1). Cell proliferation in the NM-1 group was significantly greater than that in the NC group (P<0.01). Moreover, there was no significant difference in the water contact angles or cell proliferation between the NM-1 group and the NM-2 group. SEM revealed that HGFs were adhered well to the surfaces of all samples, while the HGFs in the NM-1 and NM-2 groups showed more extended areas, longer morphologies, and more developed pseudopodia than did those in the NC group after 24 h. qRT-PCR revealed that the expression levels of the adhesion-related genes COL1A1, COL3A1, FN1, FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups (P<0.01). The expression of vinculin protein in the NM-1 group was the highest, and the number of focal adhesions was greatest in the NM-1 group (P<0.01). The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers (P<0.000 1).
Conclusion
The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion, proliferation, collagen fiber secretion and syntheses of HGFs, and electrochemical dealloying of Ti6Al4V with a grid diameter of approximately 30 nm obviously promoted HGF formation.
2.Mining and analysis of adverse drug event signals of cinacalcet and etelcalcetide
Hongli WANG ; Guizun ZHONG ; Dongxuan LI ; Zhengze SHEN
China Pharmacy 2024;35(8):986-990
OBJECTIVE To explore and analyze the adverse drug event (ADE) signals of cinacalcet and etelcalcetide, to provide a reference for safe drug use in the clinic. METHODS ADE reports related to cinacalcet and etelcalcetide were extracted from the FDA Adverse Event Reporting System from January 1st, 2004 to June 30th, 2023 using the OpenVigil online tool. The Bayesian confidence propagation neural network method was adopted to detect the signals of ADE from the key organ systems. The signals were encoded according to the preferred term in the ADE terminology set of the Medical Dictionary for Regulatory Activities (26.0 edition). RESULTS A total 41 709 and 1 710 ADE reports were extracted, and 29 and 45 safety signals were detected in key systems for cinacalcet and etelcalcetide, respectively; 20 and 36 positive signals were not included in the drug instructions. Hypocalcemia/decreased serum calcium, abnormal blood parathyroid hormone (PTH)/increased or decreased serum PTH were common ADEs of the two drugs, which were detected in the study. Among the signals not included in the drug instructions, new moderate and strong signals were detected, such as cinacalcet-induced calcification defense (metabolic and nutritional diseases), bone starvation syndrome and high conversion bone diseases (musculoskeletal and connective tissue diseases) as well as etelcalcetide-induced sudden death, necrosis and treatment of non-responders (general disorders, administration site), unstable angina pectoris, myocardial ischemia (cardiac diseases), intestinal perforation, gastric antrum vasodilation and gastric ulcer (gastrointestinal diseases). CONCLUSIONS In the clinical application of the two drugs, apart from the common ADEs such as hypocalcemia and abnormal blood PTH, the surveillance of some new potential ADEs should also be carried out, such as bone starvation syndrome, calcification defense, ventricular disease and other cinacalcet-induced ADEs, sudden death, myocardial ischemia, unstable angina pectoris, intestinal perforation, gastric ulcer and other etecalcetide-induced ADEs. If new ADEs appear, clinic should promptly assess the benefits and risks, and update the treatment plan and pharmacological monitoring plan to ensure the safety of patient medication.
3.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
4.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
5.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
6.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
7.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
8.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
9.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
10.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.


Result Analysis
Print
Save
E-mail