1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Herbal Textual Research on Tribuli Fructus and Astragali Complanati Semen in Famous Classical Formulas
Jiaqin MOU ; Wenjing LI ; Yanzhu MA ; Yue ZHOU ; Wenfeng YAN ; Shijun YANG ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):241-251
By systematically combing ancient and modern literature, this paper examined Tribuli Fructus and Astragali Complanati Semen(ACS) used in the famous classical formulas from the aspects of name, origin, production area, harvesting and processing, clinical efficacy, so as to provide a basis for the development of famous classical formulas containing such medicinal materials. The results showed that the names of Tribuli Fructus in the past dynasties were mostly derived from its morphology, and there were nicknames such as Baijili, Cijili and Dujili. The name of ACS in the past dynasties were mostly originated from its production areas, and there were nicknames such as Baijili, Shayuan Jili and Tongjili. Because both of them had the name of Baijili, confusion began to appear in the Song dynasty. In ancient and modern times, the main origin of Tribuli Fructus were Tribulus terrestris, and ancient literature recorded the genuine producing areas of Tribuli Fructus was Dali in Shaanxi and Tianshui in Gansu, but today it is mainly cultivated in Anhui and Shandong. The fruit is the medicinal part, harvested in autumn throughout history. There is no description of the quality of Tribuli Fructus in ancient times, and the plump, firm texture, grayish-white color is the best in modern times. Traditional processing methods for Tribuli Fructus included stir-frying and wine processing, while modern commonly used is purified, fried and salt-processed. The ancient records of Tribuli Fructus were spicy, bitter, and warm in nature, with modern research adding that it is slightly toxic. The main effects of ancient and modern times include treating wind disorders, improving vision, promoting muscle growth, and treating vitiligo. The mainstream base of ACS used throughout history is Astragalus complanatus. Ancient texts indicated ACS primarily originated from Shaanxi province. Today, the finest varieties come from Tongguan and Dali in Shaanxi. The medicinal part is the seed, traditionally harvested in autumn. Modern harvesting occurs in late autumn or early winter, followed by sun-drying. Ancient texts valued seeds with a fragrant aroma as superior, while modern standards prioritize plump, uniform and free of impurities. Traditional processing methods for ACS included frying until blackened and wine-frying, while modern practice commonly employs purification methods. In terms of medicinal properties, the ancient and modern records are sweet and warm in nature. Due to originally classified under Tribuli Fructus, its effects were thus regarded as equivalent to those of Tribuli Fructus, serving as the medicine for treating wind disorders, additional functions included tonifying the kidneys and treating vitiligo. The present record of its efficacy is to tonify the kidney and promote Yang, solidify sperm and reduce urine, nourish the liver and brighten the eye, etc. Based on the textual research results, it is suggested that when developing the famous classical formulas of Tribuli Fructus medicinal materials, we should pay attention to the specific reference object of Baijili, T. terrestris and A. complanatus should be identified and selected, and the processing method should be in accordance with the requirements of the formulas.
4.Research progress on chemical constituents, pharmacological effects of Anemarrhenae Rhizoma and predictive analysis of its quality markers.
Wen-Jun WANG ; Ze-Min YANG ; An LIU ; Li-Dong SHAO ; Jin-Tang CHENG
China Journal of Chinese Materia Medica 2025;50(4):934-945
Anemarrhenae Rhizoma is bitter, sweet, and cold in nature, and has the effects of clearing heat, dispelling fire, nourishing Yin, and moisturizing dryness. It is associated with the lung, stomach, and kidney meridians, and is mainly distributed in the northwestern and northern regions of China. Modern research has shown that Anemarrhenae Rhizoma contains various chemical active constituents, including steroidal saponins, flavonoids, polysaccharides, lignans, volatile oils, and alkaloids. These constituents exhibit pharmacological effects such as anti-tumor, hypoglycemic, anti-inflammatory, and neuroprotective activities. However, there have been few comprehensive summaries of Anemarrhenae Rhizoma in recent years, which has limited its in-depth research and development. The complexity of traditional Chinese medicine constituents, along with their quality and efficacy, is easily influenced by processing, preparation, and the growing environment and resource distribution. This paper summarizes the resources, chemical constituents, and pharmacological effects of Anemarrhenae Rhizoma, and predicts its quality markers(Q-markers) from several aspects, including the specificity of chemical composition, properties related to preparation and active ingredients, measurability of chemical components, compounding environment, construction of the ″active ingredient-target″ network pathway, and differences in active ingredient content from different origins and parts. These predicted Q-markers may provide a basis for improving the quality evaluation system of Anemarrhenae Rhizoma.
Anemarrhena/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Humans
;
Animals
;
Quality Control
5.Huotan Jiedu Tongluo Decoction inhibits ferroptosis by regulating Nrf2/GPX4 pathway to ameliorate atherosclerotic lesions in ApoE~(-/-) mice.
Di GAO ; Teng-Hui TIAN ; Ke-Ying YU ; Xiao SHAO ; Wen XUE ; Zhi-Xuan ZHAO ; Yue DENG
China Journal of Chinese Materia Medica 2025;50(7):1908-1919
The purpose of this study was to clarify the effect of Huotan Jiedu Tongluo Decoction on atherosclerosis(AS) injury in ApoE~(-/-) mice by regulating the ferroptosis pathway. Seventy-five ApoE~(-/-) mice were randomly divided into model group, low-, medium-, and high-dose of Huotan Jiedu Tongluo Decoction groups, and evolocumab group(n=15), and 15 C57BL/6J mice were selected as the blank group. Mice in the blank group were fed with a normal diet, and those in the other groups were fed with a high-fat diet to induce AS. From the 9th week, mice in Huotan Jiedu Tongluo Decoction groups were administrated with Huotan Jiedu Tongluo Decoction at corresponding doses by gavage, and those in the blank group and the model group were given an equal volume of distilled water. Mice in the evolocumab group were treated with evolocumab 18.2 mg·kg~(-1 )by subcutaneous injection every 2 weeks. After 8 weeks of continuous intervention, oil red O staining and hematoxylin-eosin(HE) staining were employed to observe the lipid deposition and plaque formation in the aortic root. Masson staining was used to evaluate the collagen content in the aortic root. The serum levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were determined by biochemical kits. The levels of Fe~(2+), superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the aorta were measured by colorimetry. The protein and mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), and acyl-CoA synthetase long chain family member 4(ACSL4) in the aorta were detected by Western blot and RT-qPCR, respectively. The expression of Nrf2, GPX4, and SLC7A11 was localized by immunofluorescence. The results showed that low-, medium-, and high-dose Huotan Jiedu Tongluo Decoction reduced the plaque formation of aortic root and increased the collagen content in AS mice. At the same time, Huotan Jiedu Tongluo Decoction improved the lipid metabolism by lowering the levels of TC, LDL-C, and TG and elevating the level of HDL-C in the serum. Huotan Jiedu Tongluo Decoction enhanced the antioxidant capacity by elevating the levels of GSH and SOD and lowering the level of MDA in the aorta and inhibiting the accumulation of Fe~(2+) in the aorta. In addition, Huotan Jiedu Tongluo Decoction up-regulated the protein and mRNA levels of Nrf2, GPX4, and SLC7A11, while down-regulating the protein and mRNA levels of ACSL4. In summary, Huotan Jiedu Tongluo Decoction can effectively alleviate AS lesions in ApoE~(-/-) mice by activating the Nrf2/GPX4 pathway, reducing lipid peroxidation, and inhibiting ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Mice, Inbred C57BL
;
Apolipoproteins E/metabolism*
;
Male
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Mice, Knockout
6.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
7.Ferroptosis: from molecules to diseases.
Xuesong WANG ; Di KANG ; Yingying WANG ; Ye SHAO ; Hongbo LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):937-953
Ferroptosis is a regulated form of cell death, with its core mechanism being intracellular iron overload-induced lipid peroxidation, leading to cellular dysfunction and mitochondrial structural abnormalities. Ferroptosis is closely related to various diseases including neurodegenerative disorders, tumors, and ischemia-reperfusion organ damage, and has become a potential therapeutic target. Iron is essential for life but can also cause cell death. Despite continuous progress in iron-related biomedical research, many questions remain unanswered. Advances in high-throughput technologies, genomics and proteomics are expected to reveal the cellular iron regulatory mechanism and open up new therapeutic approaches for ferroptosis-related diseases. This article reviews the research progress on iron in terms of its biology, metabolism, regulation, and related diseases, aiming to provide clues and references for developing new ferroptosis-targeted therapeutic strategies and facilitating more in-depth molecular studies from multiple perspectives.
Humans
;
Ferroptosis/physiology*
;
Iron/metabolism*
;
Animals
;
Neoplasms/metabolism*
;
Neurodegenerative Diseases/metabolism*
8.Research Progress in Copper Homeostasis and Diseases.
Shu-Ting QIU ; Xiao-Hua TAN ; Shi-Han SHAO ; Li YU ; Ying-Ying ZHANG ; Yue-Jia CAO ; Di CHUN-HONG
Acta Academiae Medicinae Sinicae 2025;47(1):102-109
As an indispensable trace element in the human body,copper plays an important role in various physiological and biochemical reactions.The dyshomeostasis of copper leads to the disorder of copper metabolism and the occurrence of related diseases.Cuproptosis,a newly proposed regulatory cell death mode,is different from the known apoptosis,pyroptosis,necroptosis,and ferroptosis.Recent studies have found that the dyshomeostasis of copper has been observed in a variety of cancers.Therefore,targeting copper for disease treatment may become a new strategy and a new idea.This article systematically summarizes the fundamental properties of copper,copper dyshomeostasis-related diseases (Menkes syndrome,Wilson's disease,and cancer) and their treatment,and reviews the research progress in cuproptosis.
Humans
;
Copper/metabolism*
;
Homeostasis
;
Neoplasms/metabolism*
;
Hepatolenticular Degeneration/metabolism*
;
Menkes Kinky Hair Syndrome/metabolism*
9.Bibliometric and Visual Analysis of the Application of in situ Simulation in Medical Field.
Peng-Xia SUN ; Di JIANG ; Shu-Ya LI ; Yan SHI ; Shao-Wen HU ; Jing CHEN ; Fan LI
Acta Academiae Medicinae Sinicae 2025;47(5):830-842
Objective To analyze the research status of in situ simulation in the medical field and explore its hotspots and trends. Methods Relevant literature was searched in China National Knowledge Infrastructure and Web of Science core collection from the inception to February 2024.CiteSpace 6.3.R1 was used to analyze the authors,institutions,and keywords and draw visual knowledge maps. Results A total of 25 Chinese articles and 438 English articles were included.Only 14 English articles were from China.In Chinese articles,the authors with the largest number of articles were Dai Hengmao and Liu Shangkun,and the institution with the largest number of articles was Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology.There was little cooperation between the authors and institutions.In English articles,the author and institution with the largest number of articles was Auerbach Marc and Yale University,respectively,and the cooperation between authors and institutions was close.Emergency medicine,emergency event handling,and on-the-job training were the keywords with high frequency in Chinese articles.Patient safety,medical education,and cardiac arrest were the keywords with high frequency in English articles.A total of 4 clusters were generated for Chinese keywords and 13 clusters for English keywords. Conclusions The application of in situ simulation in the medical field is still in the initial stage,and the development is not balanced at home and abroad.The number of articles published and the cooperation between authors and institutions in China obviously lags behind those abroad.Treatment and care of emergency critical patients,emergency event handling and skill training,identification of latent safety threats,improvement of readiness,and promotion of medical quality improvement are the future research hotspots and research trends in this field.
Bibliometrics
;
Humans
;
China
;
Simulation Training
;
Education, Medical
;
Emergency Medicine/education*
10.Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury
Di-You CHEN ; Peng-Fei WU ; Xi-Yan ZHU ; Wen-Bing ZHAO ; Shi-Feng SHAO ; Jing-Ru XIE ; Dan-Feng YUAN ; Liang ZHANG ; Kui LI ; Shu-Nan WANG ; Hui ZHAO
Chinese Journal of Traumatology 2024;27(3):153-162
Purpose::Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries.Methods::This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q 1, Q 3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. Results::According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval ( CI): 2.08 -25.42, p = 0.002), 2.85 (95% CI: 1.11 -7.31, p = 0.030), 2.62 (95% CI: 1.12 -6.13, p = 0.027), 2.44 (95% CI: 1.25 -4.76, p = 0.009), and 1.5 (95% CI: 1.10 -2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ 2= 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ 2= 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. Conclusion::Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.

Result Analysis
Print
Save
E-mail