1.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
2.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
3.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
4.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
5.Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics.
Shihao HUANG ; Xiaoxing LIU ; Zhonghao LI ; Yue SI ; Liping YANG ; Jiahui DENG ; Yixiao LUO ; Yan-Xue XUE ; Lin LU
Neuroscience Bulletin 2025;41(2):289-304
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Humans
;
Substance-Related Disorders/psychology*
;
Memory Consolidation/physiology*
;
Animals
;
Extinction, Psychological/physiology*
6.Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study.
Yuanyue ZHU ; Linhui SHEN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Jieli LU ; Min XU ; Yufang BI ; Weiguo HU
Frontiers of Medicine 2025;19(1):79-89
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50-4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17-5.16), kidney cancer (aOR=2.04, 95% CI 1.05-3.94), and bladder cancer (aOR=2.23, 95% CI 1.01-5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12-2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29-4.49), colorectal cancer (aOR=1.83, 95% CI 1.18-2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11-6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
Humans
;
Mendelian Randomization Analysis
;
Gallstones/complications*
;
Female
;
Male
;
Cholecystectomy/statistics & numerical data*
;
Middle Aged
;
Risk Factors
;
Aged
;
Adult
;
Neoplasms/etiology*
;
Stomach Neoplasms/epidemiology*
7.Shenlian Extract Protects against Ultrafine Particulate Matter-Aggravated Myocardial Ischemic Injury by Inhibiting Inflammation and Cell Apoptosis.
Shui Qing QU ; Yan LIANG ; Shuo Qiu DENG ; Yu LI ; Yue DAI ; Cheng Cheng LIU ; Tuo LIU ; Lu Qi WANG ; Li Na CHEN ; Yu Jie LI
Biomedical and Environmental Sciences 2025;38(2):206-218
OBJECTIVE:
Emerging evidence suggests that exposure to ultrafine particulate matter (UPM, aerodynamic diameter < 0.1 µm) is associated with adverse cardiovascular events. Previous studies have found that Shenlian (SL) extract possesses anti-inflammatory and antiapoptotic properties and has a promising protective effect at all stages of the atherosclerotic disease process. In this study, we aimed to investigated whether SL improves UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis.
METHODS:
We established a mouse model of MI+UPM. Echocardiographic measurement, measurement of myocardialinfarct size, biochemical analysis, enzyme-linked immunosorbent assay (ELISA), histopathological analysis, Transferase dUTP Nick End Labeling (TUNEL), Western blotting (WB), Polymerase Chain Reaction (PCR) and so on were used to explore the anti-inflammatory and anti-apoptotic effects of SL in vivo and in vitro.
RESULTS:
SL treatment can attenuate UPM-induced cardiac dysfunction by improving left ventricular ejection fraction, fractional shortening, and decreasing cardiac infarction area. SL significantly reduced the levels of myocardial enzymes and attenuated UPM-induced morphological alterations. Moreover, SL significantly reduced expression levels of the inflammatory cytokines IL-6, TNF-α, and MCP-1. UPM further increased the infiltration of macrophages in myocardial tissue, whereas SL intervention reversed this phenomenon. UPM also triggered myocardial apoptosis, which was markedly attenuated by SL treatment. The results of in vitro experiments revealed that SL prevented cell damage caused by exposure to UPM combined with hypoxia by reducing the expression of the inflammatory factor NF-κB and inhibiting apoptosis in H9c2 cells.
CONCLUSION
Overall, both in vivo and in vitro experiments demonstrated that SL attenuated UPM-aggravated myocardial ischemic injury by inhibiting inflammation and cell apoptosis. The mechanisms were related to the downregulation of macrophages infiltrating heart tissues.
Animals
;
Apoptosis/drug effects*
;
Particulate Matter/adverse effects*
;
Mice
;
Male
;
Inflammation/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Inbred C57BL
;
Myocardial Ischemia/drug therapy*
;
Cell Line
8.Mechanism of chrysophanol in improving acute kidney injury induced by ischemia reperfusion
Xue YANG ; Yan-qing WANG ; Min DENG ; Lu TIE ; Lin-lin LI
Acta Pharmaceutica Sinica 2024;59(5):1295-1305
Kidney ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) with a poor prognosis and high mortality rate. Recent studies have reported that chrysophanol may have a renal protective effect, but its specific impact and mechanism on IRI remain unclear. This study aimed to explore the effects and mechanisms of chrysophanol on AKI induced by IRI. By utilizing a unilateral kidney IRI mouse model, histopathological changes in the kidney, serum levels of creatinine and urea nitrogen, and protein expressions of apoptosis and mitophagy in kidney tissue were examined. Additionally, a hypoxia/reoxygenation (H/R) model of human kidney-2 (HK-2) cells was established to measure mitochondrial membrane potential levels and reactive oxygen species (ROS). Functional enrichment analysis was performed to screen relevant targets of chrysophanol and AKI, and to verify key targets and pathways. The animal experiments conducted in this study were ethically approved by the Experimental Animal Ethics Committee of Peking University (No. LA2021503). The findings indicate that the IRI group exhibited elevated levels of creatinine and urea nitrogen in serum, significant renal tissue damage, and increased expression of renal injury markers (KIM1), apoptosis-related proteins (cleaved-caspase 3, caspase 3, cytochrome C), and mitochondrial autophagy protein (PINK1) compared to the sham surgery group. Chrysophanol treatment ameliorated the aforementioned pathological changes in a dose-dependent manner in an IRI model. Additionally, it exhibited significant improvements in mitochondrial membrane potential and inhibition of ROS production in HK-2 cells subjected to H/R conditions. Through network pharmacological analysis, HSP90AA1 and PIK3R1 were identified as key targets primarily enriched in the phosphoinositide 3 kinase/protein kinase B (PI3K/Akt) pathway. Real-time quantitative PCR (qPCR) validation confirmed that chrysophanol significantly decreased
9.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
10.Epidemiological features of visceral leishmaniasis cases in Henan Province from 2021 to 2023
Chengyun YANG ; Dan WANG ; Deling LU ; Zhiquan HE ; Penghui JI ; Dan QIAN ; Ying LIU ; Yuanjing KOU ; Suhua LI ; Ruimin ZHOU ; Yan DENG ; Hongwei ZHANG
Chinese Journal of Schistosomiasis Control 2024;36(4):393-398
Objective To analyze the characteristics of visceral leishmaniasis cases in Henan Province, so as to provide insights into formulation of the visceral leishmaniasis control srtrategy. Methods All epidemiological data of reported visceral leishmaniasis cases in Henan Province from 2021 to 2023 were retrieved from the National Notifiable Disease Report Information Management System of Chinese Center for Disease Control and Prevention, and the epidemiological features and diagnosis of visceral leishmaniasis cases were descriptively analyzed. Results A total of 93 visceral leishmaniasis cases were reported in Henan Province from 2021 to 2023, with a male to female ratio of 2.58∶1, and including 2 imported cases from other provinces and 91 local cases. The number of visceral leishmaniasis cases peaked during the period between March and May, and between July and October. The reported visceral leishmaniasis cases had ages of 7 months to 74 years, with the largest number of cases found at ages of 0 to 9 years (26 cases, 27.96%), followed by at ages of 60 to 70 years (24 cases, 25.81%). Farmer (47 cases, 50.54%) and diaspora children (19 cases, 20.43%) were predominant occupations, and 91 local visceral leishmaniasis cases were found in 6 cities of Zhengzhou, Luoyang, Anyang, Hebi, Sanmenxia and Xuchang. The median duration from onset of visceral leishmaniasis to diagnosis was 20 days, and there were 25.81% (24/93) cases with 10 days and less duration from onset to diagnosis, 38.71% (36/93) cases receiving diagnosis at 11 to 30 days following onset, and 35.48% (33/93) cases receiving diagnosis for more than 30 days following onset. All cases were predominantly diagnosed in province- (60.00%) and city-level (28.89%) medical institutions. Conclusions The number of visceral leishmaniasis is on the rise in Henan Province, with a gradually expanding coverage. Intensified monitoring of visceral leishmaniasis cases, dogs, and vectors, dog management, sandflies control and improved individual protection are recommended to prevent the spread of visceral leishmaniasis.

Result Analysis
Print
Save
E-mail