1.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
2.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
3.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
4.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
7.Effectiveness of double joystick technique assisted treatment of Gartland type Ⅲ supracondylar fractures of the humerus in children.
Guangyao LI ; Feng HU ; He BAI ; Wei LIU ; Dandan HAN ; Quangui CHEN ; Shaolin TAN ; Ke SHA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1160-1164
OBJECTIVE:
To evaluate the effectiveness of double joystick technique assisted closed reduction and Kirschner wire internal fixation in the treatment of Gartland type Ⅲ supracondylar fractures of the humerus (SCFH) in children.
METHODS:
A retrospective study was conducted on 28 cases of Gartland type Ⅲ SCFH with complete data available, who underwent closed reduction and Kirschner wire internal fixation with the double joystick technique between August 2022 and July 2024. There were 23 boys and 5 girls, with an average age of 6.4 years (range, 1-12 years). All fractures resulted from falls and were classified as extension-type. X-ray film showed the radial displacement of the distal fragment in 15 cases and unlar displacement in 13 cases. The interval from injury to operation was 3-36 hours (mean, 19.5 hours). X-ray film re-examination was conducted to evaluate the fracture healing, and the Baumann angle of affected elbow joint and carrying angle of bilateral elbow joints were measured. Elbow joint function was evaluated using the range of motion (flexion and extension) and the Flynn criteria. The above indicators were compared between affected and healthy sides.
RESULTS:
All operation were successfully completed. The operation time ranged from 15 to 40 minutes (mean, 25.2 minutes). The length of hospital stay was 2-5 days (mean, 3.5 days). All patients were followed up 3-24 months (mean, 11.8 months). X-ray film confirmed fracture healing in all patients, with a mean healing time of 5.4 weeks (range, 4-6 weeks). At last follow-up, the Baumann angle of the affected elbow joint was (73.50±3.46)°, and the carrying angle and the range of motion in flexion and extension of the affected elbow joint were significantly less than the contralateral side (P<0.05). According to the Flynn criteria, the elbow joint function of the affected elbow was evaluated as excellent in 25 cases and good in 3 cases, with an excellent and good rate of 100%.
CONCLUSION
The double joystick technique is a safe and effective method which can facilitate the closed reduction and Kirschner wire internal fixation of Gartland type Ⅲ SCFH in children without increasing risk of complications.
Humans
;
Male
;
Female
;
Humeral Fractures/diagnostic imaging*
;
Fracture Fixation, Internal/instrumentation*
;
Child
;
Retrospective Studies
;
Bone Wires
;
Child, Preschool
;
Fracture Healing
;
Treatment Outcome
;
Infant
;
Elbow Joint/physiopathology*
;
Range of Motion, Articular
;
Closed Fracture Reduction/methods*
8.Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism.
Dandan XIAO ; Wenguang CHANG ; Xiang AO ; Lin YE ; Weiwei WU ; Lin SONG ; Xiaosu YUAN ; Luxin FENG ; Peiyan WANG ; Yu WANG ; Yi JIA ; Xiaopeng TANG ; Jianxun WANG
Acta Pharmaceutica Sinica B 2025;15(3):1589-1607
Iron overload is strongly associated with heart disease. Ferroptosis is a new form of regulated cell death indicated in cardiac ischemia-reperfusion (I/R) injury. However, the specific molecular mechanism of myocardial injury caused by iron overload in the heart is still unclear, and the involvement of ferroptosis in iron overload-induced myocardial injury is not fully understood. In this study, we observed that ferroptosis participated in developing of iron overload and I/R-induced cardiomyopathy. Mechanistically, we discovered that Parkin inhibited iron overload-induced ferroptosis in cardiomyocytes by promoting the ubiquitination of long-chain acyl-CoA synthetase 4 (ACSL4), a crucial protein involved in ferroptosis-related lipid metabolism pathways. Additionally, we identified p53 as a transcription factor that transcriptionally suppressed Parkin expression in iron-overloaded cardiomyocytes, thereby regulating iron overload-induced ferroptosis. In animal studies, cardiac-specific Parkin knockout mice (Myh6-CreER T2 /Parkin fl/fl ) fed a high-iron diet presented more severe myocardial damage, and the high iron levels exacerbated myocardial I/R injury. However, the ferroptosis inhibitor Fer-1 significantly suppressed iron overload-induced ferroptosis and myocardial I/R injury. Moreover, Parkin effectively protected against impaired mitochondrial function and prevented iron overload-induced mitochondrial lipid peroxidation. These findings unveil a novel regulatory pathway involving p53-Parkin-ACSL4 in heart disease by inhibiting of ferroptosis.
9.Combining label-free quantitative proteomics and 2D-DIGE to identify the potential targets of Sini Decoction acting on myocardial infarction.
Fei FENG ; Weiyue ZHANG ; Yan CAO ; Diya LV ; Yifeng CHAI ; Dandan GUO ; Xiaofei CHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):1016-1024
Sini Decoction (SNT) is a traditional formula recognized for its efficacy in warming the spleen and stomach and dispersing cold. However, elucidating the mechanism of action of SNT remains challenging due to its complex multiple components. This study utilized a synergistic approach combining two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE)-based drug affinity responsive target stability (DARTS) with label-free quantitative proteomics techniques to identify the direct and indirect protein targets of SNT in myocardial infarction. The analysis identified 590 proteins, with 30 proteins showing significant upregulation and 51 proteins showing downregulation when comparing the SNT group with the model group. Through the integration of 2D-DIGE DARTS with proteomics data and pharmacological assessments, the findings indicate that protein disulfide-isomerase A3 (PDIA3) may serve as a potential protein target through which SNT provides protective effects on myocardial cells during myocardial infarction.
Myocardial Infarction/genetics*
;
Proteomics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Protein Disulfide-Isomerases/genetics*
;
Male
;
Two-Dimensional Difference Gel Electrophoresis/methods*
;
Humans
;
Rats
;
Rats, Sprague-Dawley
;
Electrophoresis, Gel, Two-Dimensional
10.ANGPTL8 knockout reduces lipopolysaccharide-induced hepatic lipid deposition
Shan LUO ; Ying FENG ; Dandan FAN ; Wenxin ZHENG ; Xingrong GUO ; Xuzhi RUAN
The Journal of Practical Medicine 2024;40(9):1197-1203
Objective To study the influence of ANGPTL8 in lipopolysaccharide(LPS)-induced hepatic lipid deposition.Methods Male wild-type(WT)and ANGPTL8 knockout mice at 6-8 weeks were used to induce sepsis models by intrabitoneal injection of LPS(10 mg/kg).qPCR and immunofluorescence were used to detected the mRNA and protein expression of ANGPTL8 in liver tissue and HepG2 cells respectively;The contents of alanine aminotransferase(ALT),aspartate aminotransferase(AST)in serum and the triglyceride(TG)and malondialdehyde(MDA)in liver homogenate were detected by kits;the histopathological changes of liver tissue were analyzed through HE staining.Lipids accumulation in liver were detected by oil red O staining.The apoptosis of liver was determinated by TUNEL staining.RNA-seq was used to analyzing the differentially expressed genes in the liver tissue of WT and ANGPTL8 KO mice,and the qPCR and Western Blot were used to verify the differential expressed genes.Results The expression of ANGPTL8 in the liver was significantly upregulated at 48 hours after LPS stimulation.Compared with WT mice,the hepatic lipid deposition,steatosis,and apoptosis were significantly alleviated in liver of ANGPTL8 KO mice,the ALT and AST levels in serum and the TG and MDA content in liver homogenate of ANGPTL8 KO mice were also reduced significantly.The expression of caveolin-1(CAV1)in liver of ANGPTL8 KO mice was significantly higher than that of WT mice.Conclusions LPS promoted the expression and secretion of ANGPTL8 in liver tissue,and ANGPTL8 increased hepatic lipid deposition and peroxidation by inhibiting the expression of CAV1.

Result Analysis
Print
Save
E-mail