1.Construction of evaluation index system of infectious disease prevention and control ability in colleges and universities
Chinese Journal of School Health 2025;46(3):438-442
Objective:
To construct a scientific and perfect evaluation index system of infectious disease prevention and control ability in colleges and universities, so as to provide reference tools for colleges and universities to effectively respond to infectious disease.
Methods:
The initial framework of the evaluation index system of infectious disease prevention and control ability in colleges and universities was constructed by using literature analysis method. Experts familiar with infectious disease prevention and control or school health work were selected to conduct two rounds( n =16,18) of Delphi expert consultation for determining the evaluation index system. Analytical hierarchy process was used to calculate the index weights and combined weights. About 198 prevention and control personnel were conveniently selected from 3 universities in Inner Mongolia Autonomous Region to comprehensively evaluate the evaluation indicators by using fuzzy comprehensive evaluation method.
Results:
After two rounds of Delphi consultation questionnaire, the effective recovery rates were 80.0% and 90.0%, the expert authority levels were 0.89 and 0.86, the expert harmony coefficients for Kendall W were 0.166 and 0.310, and the variation coefficient of each index was <0.25. Finally, the evaluation index system of infectious disease prevention and control ability of colleges and universities included 4 first level indicators, 14 second level indicators and 75 third level indicators. The weights of prevention and monitoring and early warning, organizational system guarantee, emergency management, rehabilitation and summary were 0.176, 0.476, 0.268 and 0.080, respectively. The top 3 weights of the secondary indexes were 0.623 for infectious disease surveillance and early warning, 0.595 for loss assessment and 0.370 for emergency response. The score of fuzzy comprehensive evaluation of the index system of infectious disease prevention and control ability in colleges and universities was 79.148, suggesting a high level.
Conclusion
The established evaluation index system of infectious disease prevention and control ability in colleges and universities is scientific and reasonable, which is conducive to provide tool reference for the evaluation of infectious disease prevention and control ability in colleges and universities.
3.Exercise preconditioning alleviates motor deficits in MPTP-induced Parkinsonian mice by improving mitochondrial function.
Miao-Miao XU ; Dan-Ting HU ; Qiao ZHANG ; Xiao-Guang LIU ; Zhao-Wei LI ; Li-Ming LU
Acta Physiologica Sinica 2025;77(3):419-431
Parkinson's disease (PD) is a common neurodegenerative disorder mainly related to mitochondrial dysfunction of dopaminergic neurons in the midbrain substantia nigra. This study aimed to investigate the effects of exercise preconditioning on motor deficits and mitochondrial function in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sedentary + saline (SS), sedentary + MPTP (SM), exercise + saline (ES), and exercise + MPTP (EM) groups. Mice in the ES and EM groups received 4 weeks of treadmill training, and then SM and EM groups were treated with MPTP for 5 days. Motor function was assessed by behavioral tests, and morphological and functional changes in dopaminergic neurons and mitochondria in the substantia nigra of the midbrain were evaluated using immunohistochemistry, Western blot, and transmission electron microscopy technology. The results showed that, compared with the SM group, the EM group exhibited significantly improved motor ability, up-regulated protein expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the midbrain, and down-regulated protein expression of α-synuclein (α-Syn) in the mitochondria of substantia nigra. Compared with the SM group, the EM group showed up-regulated protein expression levels of mitochondrial fusion proteins, including optical atrophy protein 1 (OPA1) and mitofusin 2 (MFN2), and biogenesis-related proteins, including peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), while the protein expression levels of dynamin-related protein 1 (DRP1) and mitochondrial fission protein 1 (FIS1) were significantly down-regulated. Compared with the SM group, the EM group showed significantly reduced damage to substantia nigra mitochondria, restored mitochondrial membrane potential and ATP production, and decreased levels of reactive oxygen species (ROS). These results suggest that 4-week treadmill pre-training can alleviate MPTP-induced motor impairments in PD mice by improving mitochondrial function, providing a theoretical basis for early exercise-based prevention of PD.
Animals
;
Male
;
Physical Conditioning, Animal/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria/physiology*
;
Dopaminergic Neurons
;
MPTP Poisoning/physiopathology*
;
Substantia Nigra
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
4.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
5.Analysis of Gene Mutations Distribution and Enzyme Activity of G6PD Deficiency in Newborns in Guilin Region.
Dong-Mei YANG ; Guang-Li WANG ; Dong-Lang YU ; Dan ZENG ; Hai-Qing ZHENG ; Wen-Jun TANG ; Qiao FENG ; Kai LI ; Chun-Jiang ZHU
Journal of Experimental Hematology 2025;33(5):1405-1411
OBJECTIVE:
To analyze the distribution characteristics of glucose-6-phosphate-dehydrogenase (G6PD) mutations and their enzyme activity in newborns patients with G6PD deficiency in Guilin region.
METHODS:
From July 2022 to July 2024, umbilical cord blood samples from 4 554 newborns in Guilin were analyzed for G6PD mutations using fluorescence PCR melting curve analysis. Enzyme activity was detected in 4 467 cases using the rate assay.
RESULTS:
Among 4 467 newborns who underwent G6PD activity testing, 162 newborns (3.63%) were identified as G6PD-deficient, including 142 males (6.04%) and 20 females (0.94%), the prevalence of G6PD deficiency was significantly higher in males than in females (P < 0.001). Genetic analysis of 4 554 newborns detected G6PD mutations in 410 cases (9%), including 171 males (7.13%) and 239 females (11.09%), with a significantly higher mutation detection rate in females than in males (P < 0.001). A total of nine single mutations and four compound heterozygous mutations were identified. The most common mutations were c.1388G>A (33.66%), c.1376G>T (23.66%) and c.95A>G (16.34%). Among newborns who underwent both enzyme activity and genetic mutation testing, males with G6PD mutations had significantly lower enzyme activity than that of females with G6PD mutations(P < 0.001). Specifically, among newborns carrying the mutations c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T or c.871G>A, males consistently exhibited lower enzymatic activity than females with the same mutations (P < 0.001). Furthermore, in male G6PD-deficient newborns, the enzyme activity levels in those carrying c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T, or c.871G>A were lower than those in both the control group and the c.519C>T group (P < 0.05).
CONCLUSION
This study provides a comprehensive profile of G6PD deficiency incidence and mutation spectrum in the Guilin region. By analyzing enzyme activity and genetic mutation results, this study provides insights into potential intervention strategies and personalized management approaches for the prevention and treatment of neonatal G6PD deficiency in the region.
Humans
;
Infant, Newborn
;
Glucosephosphate Dehydrogenase Deficiency/epidemiology*
;
Glucosephosphate Dehydrogenase/genetics*
;
Female
;
Male
;
Mutation
;
China/epidemiology*
6.A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates.
Zhi-Qiang XIAO ; Xiu HAN ; Xin REN ; Zeng-Qiang WANG ; Si-Qi CHEN ; Qiao-Feng ZHU ; Hai-Yang CHENG ; Yin-Tian LI ; Dan LIANG ; Xuan-Wei LIANG ; Ying XU ; Hui YANG
Neuroscience Bulletin 2025;41(5):911-916
7.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
8.Altered serum metabolic profile in patients with autoimmune gastritis compared to other chronic gastritis.
Jihua SHI ; Yang ZHANG ; Yiran WANG ; Yuxi HUANG ; Zhe CHEN ; Xue XU ; Wenbin LI ; Dan CHEN ; Hao LUO ; Qingfeng LUO ; Ruiyue YANG ; Xue QIAO
Journal of Pharmaceutical Analysis 2025;15(5):101104-101104
Image 1.
9.Research progress on sarcopenia in patients with lung cancer
Dan-Ni DONG ; Qiao CHU ; Mi XIANG ; Ya-Ping HE
Parenteral & Enteral Nutrition 2024;31(3):184-188,192
Sarcopenia is a syndrome associated with decreased muscle mass,decreased muscle strength,and reduced physical performance. Due to multiple factors such as tumor metabolism,systemic inflammatory response,disease progression,and reduced physical activity associated with treatment itself,the risk of sarcopenia in patients with lung cancer is higher than that of the general population. Sarcopenia is closely related to the clinical outcomes,including increased risk for mortality,and significantly impacts patients' long-term quality of life and mental health. This study systematic reviewed the risk factors for sarcopenia in patients with lung cancer,its negative effects on clinical outcomes,long-term quality of life and mental health,and the interventions for sarcopenia. Given the significant impact of sarcopenia on patients with lung cancer,it is urgent to explore a multidisciplinary intervention model to improve their survival and quality of life.
10.Myocardial patch:cell sources,improvement strategies,and optimal production methods
Wei HU ; Jian XING ; Guangxin CHEN ; Zee CHEN ; Yi ZHAO ; Dan QIAO ; Kunfu OUYANG ; Wenhua HUANG
Chinese Journal of Tissue Engineering Research 2024;28(17):2723-2730
BACKGROUND:Myocardial patches are used as an effective way to repair damaged myocardium,and there is controversy over which cells to use to make myocardial patches and how to maximize the therapeutic effect of myocardial patches in vivo. OBJECTIVE:To find out the best way to make myocardial patches by overviewing the cellular sources of myocardial patches and strategies for perfecting them. METHODS:The first author searched PubMed and Web of Science databases by using"cell sheet,cell patch,cardiomyocytes,cardiac progenitor cells,fibroblasts,embryonic stem cell,mesenchymal stem cells"as English search terms,and searched CNKI and Wanfang databases by using"myocardial patch,biological 3D printing,myocardial"as Chinese search terms.After enrollment screening,94 articles were ultimately included in the result analysis. RESULTS AND CONCLUSION:(1)The cellular sources of myocardial patches are mainly divided into three categories:somatic cells,monoenergetic stem cells,and pluripotent stem cells,respectively.There are rich sources of cells for myocardial patches,but not all of them are suitable for making myocardial patches,e.g.,myocardial patches made from fibroblasts and skeletal myoblasts carry a risk of arrhythmogenicity,and mesenchymal stem cells have a short in vivo duration of action and ethical concerns.With the discovery of induced multifunctional stem cells,a reliable source of cells for making myocardial patches is available.(2)There are two methods of making myocardial patches.One is using cell sheet technology.The other is using biological 3D printing technology.Cell sheet technology can preserve the extracellular matrix components intact and can maximally mimic the cell growth ring in vivo.However,it is still difficult to obtain myocardial patches with three-dimensional structure by cell sheet technology.Biologicasl 3D printing technology,however,can be used to obtain myocardial patches with three-dimensional structures through computerized personalized design.(3)The strategies for perfecting myocardial patches mainly include:making myocardial patches after co-cultivation of multiple cells,improving the ink formulation and scaffold composition in biological 3D printing technology,improving the therapeutic effect of myocardial patches,suppressing immune rejection after transplantation,and perfecting the differentiation and cultivation protocols of stem cells.(4)There is no optimal cell source or method for making myocardial patches,and myocardial patches obtained from a particular cell or technique alone often do not achieve the desired therapeutic effect.Therefore,researchers need to choose the appropriate strategy for making myocardial patches based on the desired therapeutic effect before making them.


Result Analysis
Print
Save
E-mail