1.Comparative Study on Effect of Jingui Shenqiwan and Liuwei Dihuangwan on Reproductive Ability and Brain Function of Normal Mice
Hong SUN ; Fan LEI ; Chenggong LI ; Rui LUO ; Shixian HU ; Bin REN ; Juan HAO ; Yi DING ; Lijun DU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):1-14
ObjectiveTo explore the effects of Jingui Shenqiwan (JSW) and Liuwei Dihuangwan (LDW) on the reproductive ability and brain function of normal mice and compare the actions of the two medications. MethodsSeven groups of female and male mice were divided at a ratio of 2∶1. Except for the control group, the other six groups were as follows: a group of both males and females receiving JSW (3.0 g·kg-1), a group of both males and females receiving LDW (4.5 g·kg-1), a group of males receiving water and females receiving JSW, a group of males receiving water while females receiving LDW, a group of females receiving water while males receiving JSW, and a group of females receiving water while males receiving LDW. Each group was administered the drug for 14 days and then caged together at a 2∶1 (female∶male) ratio to detect the number of pregnant mice and calculate the pregnancy rate. Pregnant mice continued receiving the drug until they naturally gave birth, which was followed by the observation of newborn mice, calculation of their average number, and the measurement of the offspring's preference for sugar water and neonatal recognition index. At the end of the experiment, the weights of the thymus and spleen were measured to calculate the organ coefficients, and mRNA or protein expression was analyzed in the brain and testes or ovaries. A 1% sucrose solution was used to examine the euphoria of their brain reward systems, while novel object recognition test (NOR) was applied to assess their memory capabilities. mRNA expression was detected using real-time quantitative polymerase chain reaction (Real-time PCR) assay, and protein expression was analyzed with Western blot. ResultsCompared with the control group, oral administration of JSW to both male and female mice for 14 days significantly increased the pregnancy rate of female mice on day 2 after being caged together (P<0.05), while LDW showed a trend but no statistical significance. Additionally, compared with the control group, JSW could upregulate the gene expression of gonadotropin-releasing hormone (GnRH) in the thalamus, as well as reproductive stem cell factor (SCF) and tyrosine kinase receptor (c-Kit) in the testes and reproductive stem cell marker mouse vasa homologue (MVH) in the ovaries, upregulate the expression of proteins influencing neuronal functional activity, such as brain-derived neurotrophic factor (BDNF), in hippocampal neurons (P<0.05), and enhance sucrose preference in male mice (P<0.05). Compared with the control group, JSW significantly increased sucrose preference and novel object recognition index in offspring mice (P<0.05), which was related to the upregulation of hippocampal dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (Nmdar) gene expression. Compared with the control group, both JSW and LDW could upregulate the protein expression of glucocorticoid receptor (GR), BDNF, and tyrosine kinase receptor B (TrkB) in the hippocampus of offspring mice (P<0.05). ConclusionJSW significantly enhances the reproductive ability of normal mice, which is not only related to the release of gonadotropin but also associated with its regulation of brain function. Additionally, JSW has a certain regulatory effect on the brain function of the offspring mice.
2.Molecular Crosstalk Mechanisms of Shoutai Wan and Juyuan Jian on Maternal-fetal Interface Subcellular Clusters in CBA/J×DBA/2 Recurrent Pregnancy Loss Model
Jingxin GAO ; Qiuping CHEN ; Xiaoyan ZHENG ; Pengfei ZENG ; Rui ZHOU ; Yancai TANG ; Qian ZENG ; Wenli GUO ; Jinzhu HUANG ; Weijun DING ; Linwen DENG ; Hang ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):70-87
ObjectiveTo systematically compare the differential regulation of the maternal-fetal interface cell lineages and communication networks in the CBA/J×DBA/2 mouse model of recurrent pregnancy loss (RPL) by the two classic therapeutic methods-tonifying the kidney to stabilize the fetus and invigorating the spleen to stabilize the fetus (Shoutai Wan, Juyuan Jian)-of traditional Chinese medicine (TCM) at the single-cell resolution and clarify their modern scientific connotations. MethodsFemale non-pregnant CBA/J mice were caged with male BALB/c (blank group) and DBA/2 (modeling group) mice separately. Pregnant mice in the modeling group were randomly grouped as follows: high/low-dose Shoutai Wan, high/low-dose Juyuan Jian, model (RPL), and positive control (dydrogesterone), with 10 mice in each group. Starting from the day after the detection of the vaginal plug, mice were administrated with drugs or an equal volume of normal saline by gavage for 10 consecutive days. After the intervention, the following indicators were measured. ① Macroscopic evaluation: general conditions, uterine wet weight, embryo loss rate, four coagulation parameters [prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and thrombin time (TT)], and peripheral blood estradiol (E2) and progesterone (Pg) levels. The decidua with embryos was stained with hematoxylin-eosin (HE) and evaluated by transmission electron microscopy (TEM). The expression of B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), angiotensin Ⅱ (AngⅡ), matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), CXC chemokine ligand 12 (CXCL12), and microtubule-associated protein 1 light chain 3 homolog (LC3)Ⅰ/Ⅱ was quantified by Western blot. ② Mechanism analysis at the single-cell level: The decidua with embryos from the blank, model, high-dose Shoutai Wan, and high-dose Juyuan Jian groups (6 mice per group, with 3 single-cell samples per group, totaling 24 mice) were analyzed by the BD Rhapsody™ platform, and the whole-cell atlas was drawn by uniform manifold approximation and projection (UMAP) dimensionality reduction clustering combined with the single-cell mouse cell atlas (scMCA). The differentially expressed genes (DEGs) and cell interaction networks were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and CellChat, and the protein-protein interaction (PPI) map of subtype cells was constructed. The CytoTRACE pseudo-temporal analysis was performed to explore the developmental trajectories of core immune cells (natural killer cells, NK cells) from maternal and fetal sources. Results① Pathological and Western blot results indicated that compared with the blank group, the RPL group showed an increase in the embryo loss rate (P<0.01), down-regulated expression of Bcl-2, LIF, MMP-2, and Vegf in the decidua with embryos (P<0.05), up-regulated protein levels of CXCL-12, AngⅡ, and IL-6 (P<0.05), blocked angiogenesis, apoptosis-inflammation imbalance, and coagulation dysfunction. Both prescriptions dose-dependently reduced the abortion rate and restored the angiogenesis-inflammation balance, and Shoutai pill showed superior performance in restoring the E2 level to the Pg level (P<0.05). ② Single-cell transcriptome analysis indicated that compared with the blank group, the RPL group showed differences in multiple key cell populations such as decidual cells, trophoblast cells, endothelial cells, erythroblasts, NK cells, and macrophages at the maternal-fetal interface. Immunity and angiogenesis were the key links in RPL. Compared with the RPL group, high-dose Shoutai Wan reversed the changes of NK cells in the embryonic layer (upregulating the mRNA levels of 17 genes and downregulating the mRNA levels of 29 genes) and macrophages (upregulating the mRNA levels of 117 genes and downregulating the mRNA levels of 53 genes) through the regulation of gene expression. High-dose Shoutai pill regulated the immune cells to affect unfolded proteins, cell adhesion, and programmed cell death, thereby promoting decidualization and angiogenesis and modulating embryo-membrane development. High-dose Juyuan Jian regulated the key subgroups of NK cells (up-regulating the mRNA levels of 9 genes and down-regulating the mRNA levels of 17 genes) and macrophages (up-regulating the mRNA levels of 110 genes and down-regulating the mRNA levels of 81 genes), which affected decidual inflammation and apoptosis and intervened in glycolysis. ③ The pseudo-temporal analysis and communication network indicated that the communication frequency of the RPL group decreased. High-dose Shoutai Wan restored maternal-fetal tolerance through pathways such as NKG2D, CDH5, GDF, and FASLG. High-dose Juyuan Jian enhanced the IL-6/LIFR/JAK/signal transducer and activator of transcription 3 (STAT3) and desmosome/SEMA6/tumor necrosis factor-like weak inducer of apoptosis (TWEAK) signaling to improve endometrial receptivity. The RPL group showed an increased proportion of toxic dNK7, a decreased proportion of reparative dNK4, and blocked embryo fNK1. High-dose Shoutai Wan down-regulated dNK7 and up-regulated dNK4. High-dose Juyuan Jian inhibited the terminal differentiation of dNK7 and up-regulated LILRB1, thus restoring the balance of cytotoxicity and repair. ConclusionBoth the kidney-tonifying and spleen-invigorating methods are effective in treating RPL. NK and macrophages are the key immune cells in the interaction between the embryo and the membrane. The kidney-tonifying method (Shoutai Wan) has an advantage in regulating the phenotypes of unfolded protein, cell adhesion, and programmed cell death, and shows expression characteristics closer to the physiological state in the regulation of NKG2D and CDH5 signals. The spleen-invigorating method (Juyuan Jian) has an advantage in regulating epithelial-mesenchymal transition (EMT), angiogenesis, and glycolysis and shows higher communication intensity in the IL-6 and LIFR pathways.
3.Efficacy Connotation and Mechanisms of Shudi Qiangjin Pills Against Steroid-induced Osteonecrosis of Femoral Head Based on "Disease-Syndrome-Formula" Association Network
Zhijian CHEN ; Suya ZHANG ; Longlong DING ; Guixin ZHANG ; Bo LIU ; Baohong MI ; Yanqiong ZHANG ; Na LIN ; Weiheng CHEN ; Chunzhu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):88-99
ObjectiveTo elucidate the efficacy connotation of Shudi Qiangjin pills (SQP) against liver and kidney deficiency in steroid-induced osteonecrosis of femoral head (SONFH) from the perspective of the "disease-syndrome-formula" association and to clarify the underlying mechanisms based on in vivo and in vitro experiment validation. MethodsThe chemical components and the corresponding putative targets of SQP were collected from the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0, the Encyclopedia of Traditional Chinese Medicine (ETCM) v2.0, and HERB databases. The SONFH-related genes were identified based on the differential expression profiles of peripheral blood of patients with SONFH compared to the healthy volunteers, and the disease phenotype-related targets were collected from the TCMIP v2.0 database. Then, the interaction network of "SONFH-related genes and candidate targets of SQP" was constructed based on "gene-gene interaction information", and the major network targets were screened by calculating the topological characteristic values of the network followed by the functional mining according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the SoFDA database. After that, the SONFH rat model was prepared by lipopolysaccharide combined with methylprednisolone injection, and 2.5, 5, 7.5 g·kg-1 SQP (once per day, equivalent to 1, 2, and 3 times the clinical equivalent dose, respectively) or 7.3×10-3 g·kg-1 of alendronate sodium (ALS, once per week, equivalent to the clinical equivalent dose) was given for 8 weeks. The effect characteristics of SQP and ALS in the treatment of SONFH were evaluated by micro-computed tomography scanning, hematoxylin and eosin staining, alkaline phosphatase (ALP) staining, immunohistochemical staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)staining, and a comparative efficacy analysis was conducted with ALS. In addition, SONFH cell models were prepared by dexamethasone stimulation of osteoblasts, and the intervention was carried out with the medicated serum of SQP at the aforementioned three doses. Cell counting kit-8, ALP staining, ALP activity assay, alizarin red staining, and flow cytometry were employed to investigate the regulatory effect of SQP on osteoblasts. The expression levels of osteogenesis-related proteins and key factors of the target signaling axis were detected by quantitative real-time polymerase chain reaction and Western blot. ResultsThe network analysis results demonstrated that the candidate targets of SQP primarily exerted their therapeutic effects through key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt), lipid metabolism and atherosclerosis, prolactin, chemokines, and neurotrophic factors pathways. These pathways were significantly involved in critical biological processes such as muscle and bone metabolism and the regulation of the "neuro-endocrine-immune" network, thereby addressing both modern medical symptoms (e.g., delayed skeletal maturation and recurrent fractures) and traditional Chinese medicine (TCM) symptoms (e.g., fatigue, aversion to cold, cold limbs, and pain in the limbs and joints in patients with SONFH characterized by liver and kidney deficiency syndrome. Among these pathways, the PI3K/Akt signaling pathway exhibited the highest degree of enrichment. The in vivo experimental results demonstrated that starting from the 4th week after modeling, the modeling group exhibited a significant reduction in body weight compared to the control group (P<0.05). After six weeks of treatment, all dosage groups of SQP showed significantly higher body weights compared to the model group (P<0.01). Compared with the normal group, the model group exhibited significant decreases in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular number (Tb.N), osteocalcin (OCN), alkaline phosphatase (ALP) levels in femoral head tissue, and serum bone-specific alkaline phosphatase (BALP) (P<0.01), along with significant increases in trabecular separation (Tb.Sp), empty lacunae rate in tissue, and apoptosis rate (P<0.01). In comparison to the model group, the SQP intervention groups showed significant improvements in BMD, BV/TV and Tb.N (P<0.01), significant reductions in Tb.Sp, empty lacunae rate and apoptosis rate (P<0.05), and significant increases in protein levels of OCN and ALP as well as BALP content (P<0.05). The in vitro experimental results revealed that all dosage groups of SQP medicated serum showed no toxic effects on osteoblast. Compared with the normal group, the model group displayed significant suppression of osteoblast proliferation activity, ALP activity, and calcified nodule formation rate (P<0.01), significant decreases in mRNA transcription levels of OCN and Runt-related transcription factor 2 (RUNX2) (P<0.01), significant reductions in protein content of osteopontin (OPN), typeⅠ collagen (ColⅠ)A1, B-cell lymphoma-2 (Bcl-2), PI3K, and phosphorylated (p)-Akt (P<0.01), and a significant increase in apoptosis rate (P<0.01). Compared with the model group, the SQP medicated serum intervention groups exhibited significant increases in proliferation activity, ALP activity, calcified nodule formation rate, mRNA transcription levels of OCN and RUNX2, and protein content of OPN, ColⅠA1, Bcl-2, PI3K, and p-Akt (P<0.05), along with a significant decrease in apoptosis rate (P<0.01). ConclusionSQP can effectively reduce the disease severity of SONFH with liver and kidney deficiency syndrome and improve bone microstructure, with the therapeutic effects exhibiting a dose-dependent manner. The mechanism may be related to its regulation of key processes such as muscle and bone metabolism and the correction of imbalances in the "neuro-endocrine-immune" network, thereby promoting osteoblast differentiation and inhibiting osteoblast apoptosis. The PI3K/Akt signaling axis is likely one of the key pathways through which this formula exerts its effects.
4.Hypoglycemic Mechanisms and Application Prospects of Dendrobii Caulis in Treatment of Diabetes Mellitus: A Review
Mingfan LI ; Liqiao HUANG ; Zhanggui DING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):308-316
Diabetes mellitus(DM) is a globally prevalent chronic metabolic disease, and its hyperglycemia can lead to a series of serious complications. Although current DM treatments are effective, they still have side effects and limitations. Therefore, discovering new drugs has become a key approach to improving DM management. As a traditional Chinese medicine, Dendrobii Caulis has garnered significant attention due to its rich phytochemical properties, which may offer a natural approach to mitigate the harmful effects of DM. Studies have demonstrated that Dendrobii Caulis can significantly reduce blood glucose levels in diabetic animal models and improve insulin resistance. Modern pharmacological studies have shown that the hypoglycemic effect of Dendrobii Caulis is primarily based on multiple mechanisms, including improving insulin sensitivity, inhibiting liver glycogen breakdown, promoting liver glycogen synthesis, and reducing oxidative stress. In addition, polysaccharides in Dendrobii Caulis have been found to increase the serum level of glucagon-like peptide-1 (GLP-1), which promotes insulin secretion and inhibits glucagon release, thereby improving the symptoms of DM and its complications. Given its potential hypoglycemic effect, Dendrobii Caulis is expected to be developed as a new hypoglycemic agent or health food with promising prospects for treating DM and its complications. With further basic and clinical research, Dendrobii Caulis is expected to become an important adjunct in DM treatment.
5.Comparison of preoperative ocular biometry between Pentacam AXL and IOL Master 700 in cataract patients
Jinfen WEI ; Simin TAN ; Lin DING ; Qiuli ZHANG
International Eye Science 2026;26(1):148-151
AIM: To compare the preoperative ocular biometry between Pentacam AXL and IOL Master 700 in cataract patients.METHODS:Prospective study. A total of 150 patients(150 eyes)with cataracts who were treated in our hospital from May to December 2024 were selected. The IOL Master 700 and Pentacam AXL were preoperatively used to measure axial length(AL), corneal curvature(K1, K2 and Km), anterior chamber depth(ACD), and white-to-white(WTW). The difference and consistency of the results of the two instruments were compared.RESULTS: There was no significant difference between the two instruments in the AL, K1, K2, Km, ACD, and WTW(all P>0.05). The Spearman correlation analysis showed that the two instruments positively correlated with the AL, K1, K2, Km, ACD and WTW of the operated eye(all P<0.001). The Bland-Altman analysis showed that for the Pentacam AXL and IOL Master 700, there were 5/150(3.3%), 7/150(4.7%), 4/150(2.7%), 5/150(3.3%), and 0 points outside the 95%LoA for the AL, K1, K2, Km, ACD, and WTW of the examined eyes, respectively, with all of these values less than 5%, indicating good consistency.CONCLUSION:The AL, K1, K2, Km, ACD and WTW of Pentacam AXL and IOL Master 700 in cataract patients before cataract phacoemulsification combined with IOL implantation show no significant differences, and have good correlation and consistency. The two instruments can be used interchangeably.
6.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
7.Study on the new workflow of PIVAS based on intelligent auxiliary devices
Haiwen DING ; Sheng LIU ; Zhaolin CHEN ; Liqin TANG ; Tong TONG
China Pharmacy 2026;37(1):99-104
OBJECTIVE To build a new workflow of pharmacy intravenous admixture services (PIVAS), effectively connect intelligent equipment, and promote the intelligent development of PIVAS. METHODS Based on intelligent auxiliary equipment, PIVAS workflow was optimized, and a process-oriented model was established. This model integrated intelligent prescription review (automatic prescription review+manual intervention mode), intelligent labeling, intelligent allocation, intelligent sorting, and finished infusion quality inspection system. Furthermore, an assessment was conducted to examine unreasonable medical order rate of intelligent prescription review, the working efficiency and error rate of intelligent labeling machine and intelligent sorting machine, and the dispensing efficiency and accuracy of intelligent dispensing robot. RESULTS Under the intelligent prescription review mode, the rate of unreasonable medical orders decreased from 0.157% to 0.050% (P<0.05); automatic labeling efficiency reached 21.7 sheets/min, surpassing the manual labeling efficiency of 13.8 sheets/min (P<0.05), and the daily labeling error rate decreased from 6.1‰ to 2.5‰ (P<0.05). Simultaneously operating two dispensing robots significantly improved the efficiency of batch dispensing and reduced the residual amount of liquid medicine (P<0.05); additionally, a quality testing system for finished infusion was established, involving appearance, Tyndall effect, insoluble particles, turbidity, absorbance, pH and osmotic pressure, to ensure the quality of finished infusion and reduce the risk of infusion. CONCLUSIONS The new process of PIVAS connected with intelligent devices in our hospital can improve work efficiency, reduce dispensing errors, ensure the quality of finished infusion, and improve the level of pharmaceutical care.
8.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
9.Effect of Wenyang Huazhuo Formula (温阳化浊方) on Reproductive Aging,Ovarian Mechanical Micro-environment,and Offspring Reproductive Potential in Aged Model Mice
Jiaqi XU ; Xiaoli ZHAO ; Nan JIANG ; Kaixi LI ; Yafei DING ; Zimu WEN ; Yingying JIA ; Mengjun JIANG ; Tian XIA
Journal of Traditional Chinese Medicine 2025;66(6):612-620
ObjectiveTo explore the possible mechanisms of Wenyang Huazhuo Formula (温阳化浊方, WHF) in improving reproductive aging from the perspective of the ovarian mechanical microenvironment. MethodsThe experiment included five groups, 3-month group (20 female mice at 3 months of age), 6-month group (20 female mice at 6 months of age), 6-month + WHF group (20 female mice at 5 months of age treated with WHF), 9-month group (20 female mice at 9 months of age), and 9-month + WHF group (20 female mice at 8 months of age treated with WHF). The 6-month + WHF group and 9-month + WHF group were orally administered WHF 41.2 g/(kg·d) once daily for 4 consecutive weeks. The other three groups received no intervention. Reproductive hormone levels were measured by ELISA. HE staining was used to count the numbers of various stages of follicles. Ovarian hyaluronic acid (HA) content and collagen fiber content were measured to evaluate the ovarian mechanical microenvironment. Superovulation was performed to observe the number of eggs obtained, as well as the number of offspring and birth weight to assess fertility. The in vitro fertilization and blastocyst culture of oocytes from female offspring in each group were observed to evaluate the effect of WHF on offspring reproductive potential. ResultsCompared with the 3-month group, the 6-month group and 9-month group showed significantly decreased serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), decreased ovarian collagen content, and reduced numbers of primordial and secondary follicles. In contrast, the numbers of primary follicles, antral follicles, and atretic follicles increased. The levels of anti-Müllerian hormone (AMH), ovarian HA content, and the fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring were significantly lower (P<0.05). Compared with the 6-month group, the 6-month + WHF group showed significantly reduced serum levels of GnRH, FSH, and LH, with a significant decrease in primary follicles, antral follicles, and atretic follicles as well as increase of AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, and offspring birth weight (P<0.05). Compared with the 9-month group, the 9-month + WHF group exhibited reduced GnRH, FSH, and collagen fiber content, as well as reduced number of primary follicles, antral follicles, and atretic follicles. However, AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, offspring numbers, birth weight, fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring all significantly increased (P<0.05). ConclusionWHF can significantly improve the ovarian reserve, fertility, and reproductive potential in offspring during reproductive mid-life and late-life stages. Its effect may be related to the remodeling of the mechanical microenvironment of aging ovaries. Moreover, the effect on the mechanical microenvironment remodeling of late-stage ovaries and the improvement of the offspring reproductive potential is more significant.
10.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.

Result Analysis
Print
Save
E-mail