1.Thoughts on Development Path of Traditional Chinese Medicine Processing Technology from Perspective of Traditional Medicine and Techniques
Ying LIU ; Yun WANG ; Zhe JIA ; Peng ZHANG ; Jie ZOU ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):233-240
As an important part of Chinese traditional culture, the processing technology of traditional Chinese medicine(TCM) carries the wisdom of TCM for thousands of years, and its process is complex and rigorous. With the popularization of modern production technology, traditional processing techiques are facing the dual pressures from technological innovation and production standardization under the perspective of intangible cultural heritage. The modernization of TCM processing technology is an inevitable trend for industrial upgrading, but it cannot be separated from the foundation of traditional skills and ignore the core concepts and cultural values it embodies. Therefore, by analyzing the core characteristics of TCM processing technology and its differences with modern production, this paper discusses the establishment of a synergistic innovation mechanism between traditional techniques and modern technologies, the promotion of joint research and development between scientific research institutes and the industry, the strengthening of standardization of processing techniques, and the enhancement of social education and industry training to improve the recognition and inheritance of processing techniques in order to achieve the goal of innovation and protection of TCM processing technologies in the context of modernization, and to promote the high-quality development of the TCM processing industry.
2.Exploration of basket trial design with Bayesian method and its application value in traditional Chinese medicine.
Si-Cun WANG ; Mu-Zhi LI ; Hai-Xia DANG ; Hao GU ; Jun LIU ; Zhong WANG ; Ya-Nan YU
China Journal of Chinese Materia Medica 2025;50(3):846-852
Basket trial, as an innovative clinical trial design concept, marks the transformation of medical research from the traditional large-scale and single-disease treatment to the precise and individualized treatment. By gradually incorporating the Bayesian method during development, the trial design becomes more scientific and reasonable and increases its efficiency. The fundamental principle of the Bayesian method is the utilization of prior knowledge in conjunction with new observational data to dynamically update the posterior probability. This flexibility enhances the basket trial's capacity to effectively adapt to variations during the research process. Consequently, it enables researchers to dynamically adjust research strategies based on accumulated data and improve the predictive accuracy regarding treatment responses. In addition, the design concept of the basket trial aligns with the traditional Chinese medicine(TCM) principle of "homotherapy for heteropathy". The principle of "homotherapy for heteropathy" emphasizes that under certain conditions, different diseases may have the same treatment. Similarly, basket trials allow using a uniform trial design across multiple diseases, offering enhanced operational and significant practical value in the realm of TCM, particularly within the context of syndrome-based disease research. By introducing basket trials, the design of TCM clinical studies will be more scientific and yield higher-quality evidence. This study systematically categorized various Bayesian methods and models utilized in basket trials, evaluated their strengths and weaknesses, and identified their appropriate application contexts, so as to offer a practical guide for designing basket trials in the realm of TCM.
Bayes Theorem
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Research Design
;
Clinical Trials as Topic/methods*
;
Drugs, Chinese Herbal/therapeutic use*
3.Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway.
Zhi-Han LI ; Wen-Min YANG ; Qi HUANG ; Guang-Xia SHI ; Cun-Zhi LIU ; Yu-Qin ZHANG
Journal of Integrative Medicine 2025;23(4):398-414
OBJECTIVE:
The occurrence and development of atrial fibrillation (AF) are influenced by the autonomic nervous system and inflammation. Acupuncture is an effective treatment for AF. This study explored the protective effects of acupuncture in a rat model of paroxysmal AF and investigated its mechanisms.
METHODS:
Male Sprague-Dawley rats (n = 130) were randomly divided into blank control (Con), sham operation (Sham), AF, and acupuncture treatment (Acu) groups. A paroxysmal AF model was established by rapid atrial pacing through the jugular vein. Rats in the Acu group were immobilized to receive acupuncture treatment at Neiguan acupoint (PC6) for 20 min daily for seven days. The other groups were immobilized for the same duration over the treatment period but did not receive acupuncture. The AF induction rate, AF duration, cardiac electrophysiological parameters, and heart rate variability were evaluated by monitoring surface electrocardiogram and vagus nerve discharge signals. After the intervention, the rats were euthanized, and atrial morphology was assessed using haematoxylin and eosin staining. The expression of macrophage F4/80 antigen (F4/80) and cluster of differentiation (CD) 86 in atrial myocardial tissue was detected using immunohistochemistry, immunofluorescence and flow cytometry. The expression levels or contents of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), α7 nicotinic acetylcholine receptor (α7nAChR), phosphorylated Janus kinase 2 (p-JAK2), and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in atrial myocardial tissue were detected using Western blotting, reverse transcription-quantitative polymerase chain reaction, or enzyme-linked immunosorbent assay. The role of α7nAChR in acupuncture treatment was verified by intraperitoneal injection of the α7nAChR antagonist methyllycaconitine (MLA).
RESULTS:
Compared with the AF group, acupuncture significantly reduced AF duration and induction rate, improved cardiac electrophysiology by enhancing vagus nerve activity and regulating autonomic balance. It also decreased the pro-inflammatory M1 macrophage proportion, alleviating myocardial injury and infiltration. MLA weakened acupuncture's electrophysiological improvement and anti-inflammatory effect. Results suggest that acupuncture triggers the α7nAChR-JAK2/STAT3 pathway and exerts cardioprotection via neuroimmune regulation.
CONCLUSION
Acupuncture significantly reduced the AF induction rate, shortened AF duration, improved cardiac electrophysiological parameters, enhanced vagus nerve activity, and decreased the expression of pro-inflammatory M1 macrophages and inflammatory factors in rats with paroxysmal AF. Its positive effects are related to the activation of the α7nAChR-mediated JAK2/STAT3 signalling pathway, indicating that the interaction between cardiac vagus nerve and macrophages may be a potential target for acupuncture in the prevention and treatment of AF. Please cite this article as: Li ZH, Yang WM, Huang Q, Shi GX, Liu CZ, Zhang YQ. Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway. J Integr Med. 2025; 23(4): 398-414.
Animals
;
Male
;
Rats, Sprague-Dawley
;
STAT3 Transcription Factor/metabolism*
;
alpha7 Nicotinic Acetylcholine Receptor/metabolism*
;
Janus Kinase 2/metabolism*
;
Atrial Fibrillation/metabolism*
;
Vagus Nerve/physiopathology*
;
Rats
;
Acupuncture Therapy
;
Signal Transduction
;
Macrophages/metabolism*
;
Inflammation/therapy*
4.Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-Altitude Hypoxia in the Rat Hippocampus.
Jin Yu FANG ; Huai Cun LIU ; Yan Fei ZHANG ; Quan Cheng CHENG ; Zi Yuan WANG ; Xuan FANG ; Hui Ru DING ; Wei Guang ZHANG ; Chun Hua CHEN
Biomedical and Environmental Sciences 2025;38(1):79-93
OBJECTIVE:
High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory. Nogo-A is an important axonal growth inhibitory factor. However, its function in high-altitude hypoxia and its mechanism of action remain unclear.
METHODS:
In an in vivo study, a low-pressure oxygen chamber was used to simulate high-altitude hypoxia, and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway. Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats, and synaptic damage in the hippocampus and changes in oxidative stress levels were observed. In vitro, SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion (OGD/R) models.
RESULTS:
Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats, triggered oxidative stress in the hippocampal tissue, and reduced the dendritic spine density of hippocampal neurons. Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress, synaptic damage, and the learning and memory impairment induced by high-altitude exposure.
CONCLUSION:
Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.
GRAPHICAL ABSTRACT
available in www.besjournal.com.
Animals
;
Oxidative Stress
;
Hippocampus/metabolism*
;
Rats
;
Nogo Proteins/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Hypoxia/metabolism*
;
Altitude
;
Synapses
;
Humans
;
Altitude Sickness/metabolism*
5.The Impacts of Climate Change on the Environment and Human Health in China: A Call for more Ambitious Action.
Shi Lu TONG ; Yu WANG ; Yong Long LU ; Cun de XIAO ; Qi Yong LIU ; Qi ZHAO ; Cun Rui HUANG ; Jia Yu XU ; Ning KANG ; Tong ZHU ; Dahe QIN ; Ying XU ; Buda SU ; Xiao Ming SHI
Biomedical and Environmental Sciences 2025;38(2):127-143
As global greenhouse gases continue rising, the urgency of more ambitious action is clearer than ever before. China is the world's biggest emitter of greenhouse gases and one of the countries affected most by climate change. The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts. This article aimed to review the evidence of environmental damages and health risks posed by climate change and to provide a new science-based perspective for the delivery of sustainable development goals. Over recent decades, China has experienced a strong warming pattern with a growing frequency of extreme weather events, and the impacts of climate change on China's environment and human health have been consistently observed, with increasing O 3 air pollution, decreases in water resources and availability, land degradation, and increased risks for both communicable and non-communicable diseases. Therefore, China's climate policy should target the key factors driving climate change and scale up strategic measures to curb carbon emissions and adapt to inevitable increasing climate impacts. It provides new insights for not only China but also other countries, particularly developing and emerging economies, to ensure climate and environmental sustainability whilst pursuing economic growth.
Climate Change
;
China
;
Humans
;
Greenhouse Gases
;
Air Pollution
;
Sustainable Development
;
Environment
6.Promotion mechanism of astragaloside on axon repair and regeneration in experimental autoimmune encephalomyelitis mice
Jian-Chun LIU ; Hong-Zhen ZHANG ; Qing WANG ; Hui-Jie FAN ; Li-Juan SONG ; Zhi CHAI ; Cun-Gen MA
Medical Journal of Chinese People's Liberation Army 2024;49(8):914-921
Objective To investigate the effects of astragaloside Ⅳ(AS-Ⅳ)on axon growth inhibitory factor A(Nogo-A)and its downstream pathway protein RHO-associated coiled spiral kinase 2(ROCK2)in experimental autoimmune encephalomyelitis(EAE)mice,and to explore the mechanism by which it promotes axon repair and regeneration.Methods EAE model was induced in C57BL/6 female mice by subcutaneous injection of myelin oligodendrocyte glycoprotein 35-55(MOG35-55).Mice were randomly divided into EAE group and AS-Ⅳ group(n=8 per group).EAE group received intraperitoneal injection of PBS on the 3rd day post-immunization,while AS-Ⅳ group was administered AS-Ⅳ at a dosage of 30mg/(kg.d)once daily,0.2 ml per injection,for 25 consecutive days.On the 28th day post-immunization,the expression levels of growth-associated protein 43(GAP-43),neuronal core antigen(NeuN),microtubule associated protein 2(MAP-2),glial fibroacidic protein(GFAP),and Iba1 in the spinal cord were detected using immunofluorescence assay.Real-time fluorescence quantitative PCR(qRT-PCR)was conducted to detect mRNA expression levels of GAP-43,Nogo-A,and Nogo receptor(NgR)genes.Western blotting was utilized to determine the expression levels of GAP-43,Nogo-A,ROCK2,phosphorylated myosin phosphatase(p-MYPT1),B-lymphoblastoma-2(Bcl-2),and Bcl-2 associated X protein(Bax).Results Compared with EAE group,AS-Ⅳ treatment significantly reduced the positive cell expression rates of Iba1 microglia and GFAP astrocyte in spinal cord(P<0.01 and P<0.001,respectively),while it also increased the positive expression rates of NeuN and MAP-2(P<0.001 and P<0.05,respectively).The treatment also upregulated the expression level of anti-apoptotic factor Bcl-2(P<0.001)and downregulated the expression level of pro-apoptotic factor Bax(P<0.05),leading to an increase in Bcl-2/Bax ratio(P<0.05).Furthermore,AS-Ⅳ enhanced the expression of GAP-43 protein(P<0.05)and decreased the mRNA expression levels of neuroregeneration inhibitor Nogo receptor(NgR)and ROCK2 gene(P<0.001,P<0.05,respectively);as well as decreased the expression levels of Nogo-A,ROCK2 and p-MYPT1 proteins(P<0.05,P<0.001).Conclusion AS-Ⅳ may inhibit the activation of microglia and astrocytes and neuronal apoptosis in EAE mice by inhibiting Nogo-A and downstream pathway ROCK 2,thereby promoting the expression of GAP-43,NeuN and MAP-2,alleviating neuronal damage,and facilitating axon repair and regeneration.
7.Research progress on myelin-associated inhibitors and their receptors in spinal cord injury repair
Xin-Tong LIU ; Qing-Hua PENG ; Huai-Cun LIU ; Wei-Guang ZHANG
Acta Anatomica Sinica 2024;55(3):371-377
Spinal cord injury is a traumatic disease,commonly seen in falling injuries,traffic accidents,heavy injuries,etc,which could cause motor,sensory and autonomic dysfunction below the level of spinal cord injury.Myelin-associated inhibitors play a role in promoting the collapse of growth cones and inhibiting axonal regeneration in the injured spinal cord microenvironment,which is the main reason for the difficult repair of spinal cord injury.Myelin-associated inhibitors(MAIs),such as neurite outgrowth inhibitor(Nogo),oligodendrocyte-myelin glycoprotein(OMgp)and myelin-associated glycoprotein(MAG),along with their receptor proteins,such as Nogo-A/Nogo-66 receptor 1(NgR1),paired immunoglobulin-like receptor B(PirB),sphingosine-1-phosphate receptor 2(S1PR2),are the important regulatory factors in the spinal cord microenvironment.They can inhibit therepair process of spinal cord injury by affecting the signaling pathway of neuron axon growth.Although the mechanism of spinal cord injury repair is still unclear,the regulation of myelin-related inhibitory factor proteins and downstream signaling pathways remain an important therapeutic approach for spinal cord injury.In this paper,the role of MAI proteins and their receptors in spinal cord injury repair in recent years were reviewed to provide a new target for spinal cord injury repair and provide more ideas for clinical treatment after spinal cord injury.
8.Effects of simulated extreme plateau environment on hippocampal transcriptome in rats
Xuan FANG ; Tao WANG ; Quan-Cheng CHENG ; Huai-Cun LIU ; Yan ZHANG ; Yan NAN ; Chun-Hua CHEN ; Wei-Guang ZHANG
Acta Anatomica Sinica 2024;55(4):445-451
Objective To establish an acute exposure model of extreme plateau hypobaric hypoxia environment and explore transcriptomic changes related to learning and memory impairment in rats.Methods Healthy male SD rats aged 6-weeks,200-250 g,were selected and divided into control group and plateau group.The control group was treated with normal pressure and oxygen(19 rats),and the plateau group was placed in a hypobaric hypoxia chamber(19 rats)at a simulated altitude of 8000 meters and treated for 72 hours.Behavioral changes were detected with 16 animals from each group using contextual fear conditioning and Morris water maze(8 rats each).Three hippocampal tissues were extracted from each group for transcriptomic sequencing,and the molecular mechanism of learning and memory impairment induced by extreme plateau environment was analyzed by Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)and gene set enrichment analysis(GSEA)enrichment.Results The behavioral result showed that compared with the control group,the fear memory and spatial learning memory abilities of rats in plateau group were decreased.GO and KEGG analyses showed that the extreme altitude environment reshaped the hippocampal microenvironment and affected the intercellular signal transmission,while GSEA analysis showed that the extreme altitude environment up-regulated the gene set related to the plasma membrane and extracellular matrix.Conclusion The extreme plateau environment at an altitude of 8000 meters could affect the microenvironment of rat hippocampus,destroy intercellular connections and impair intercellular communication and then induce learning and memory impairment.
9.Design,numerical simulation and experimental study of novel oxygenator
Ming-Hao YUE ; Shi-Yao ZHANG ; Ji-Nian LI ; Hui-Chao LIU ; Zi-Hua SU ; Ya-Wei WANG ; Zeng-Sheng CHEN ; Shi-Hang LIN ; Jin-Yu LI ; Ya-Ke CHENG ; Yong-Fei HU ; Cun-Ding JIA ; Ming-Zhou XU
Chinese Medical Equipment Journal 2024;45(3):23-28
Objective To design a novel oxygenator to solve the existing problems of extracorporeal membrane oxygenation(ECMO)machine in high transmembrane pressure difference,low efficiency of blood oxygen exchange and susceptibility to thrombosis.Methods The main body of the oxygenator vascular access flow field was gifted with a flat cylindrical shape.The topology of the vascular access was modeled in three dimensions,and the whole flow field was cut into a blood inlet section,an inlet buffer,a heat exchange zone,a blood oxygen exchange zone,an outlet buffer and a blood outlet section.The oxygenator was compared with Quadrox oxygenator by means of ANSYS FLUENT-based simulation and prototype experiments.Results Simulation calculations showed the oxygenator designed was comparable to the clinically used ones in general,and gained advantages in transmembrane pressure difference,blood oxygen exchange and flow uniformity.Experimental results indicated that the oxygenator behaved better than Quadrox oxygenator in transmembrane pressure difference and blood oxygen exchange.Conclusion The oxygenator has advantages in transmem-brane pressure difference,temperature change,blood oxygen ex-change and low probability of thrombosis.[Chinese Medical Equipment Journal,2024,45(3):23-28]
10.Anti-bacterial effect and its mechanism of lavender essential oil against multi-drug resistant Acinetobacter baumannii
Man ZHAO ; Zijing WU ; Cun SUN ; Yan YE ; Ting CHEN ; Shulin LIU ; Baohang ZHU ; Anni ZHAO ; Zhen SONG ; Yun YANG ; Hongwu SUN ; Hao ZENG
Journal of Army Medical University 2024;46(18):2046-2056
Objective To investigate the antibacterial effect and its preliminary mechanism of lavender essential oil on multi-drug resistant Acinetobacter baumannii.Methods Micro-dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)of lavender essential oil against multi-drug resistant Acinetobacter baumannii,and bactericidal kinetic study was employed to determine the onset and maintenance time of lavender essential oil.Meanwhile,the promoting and therapeutic effects of lavender essential oil on wound healing were observed in a mouse model of infection.Subsequently,crystal violet staining was used to determine the inhibition and clearance of multi-drug resistant Acinetobacter baumannii biofilm by lavender essential oil,and laser confocal microscopy was utilized to observe the survival of bacteria in biofilms.NanoDrop instrument was utilized to quantify the leakage of bacterial DNA nucleic acid and protein after intervention with 3 and 6 mg/mL lavender essential oil,and the leakage of bacterial potassium ion was measured by potassium ion test kit.Proteomics technology combined with bio-informatics were applied to explore the action mechanism of lavender essential oil against multi-drug resistant Acinetobacter baumannii.Results The MIC and MBC of lavender essential oil were both 6 mg/mL,which could kill almost all multi-drug resistant Acinetobacter baumannii at the time point of 120 min,and showed an obvious dose-and time-dependent manner.The overall animal model evaluation showed that both 3 and 6 mg/mL lavender essential oil could promote wound healing,and the curative effect was obvious.Further studies confirmed that 3 mg/mL lavender essential oil had a certain biofilm inhibitory effect on multi-drug resistant Acinetobacter baumannii,and 6 mg/mL also had a certain biofilm clearance effect under the same conditions.Meanwhile,when incubated at 37℃ for 1 h,the dose of 3 mg/mL could increase the leakage of DNA nucleic acid and protein,and significantly promote the efflux of potassium ions.Proteomic analysis suggested that the antibacterial effect of lavender essential oil may be related to affecting the oxidorereductase activity and cell metabolic process of multi-drug resistant Acinetobacter baumannii,and interfering with the biosynthesis of cell wall/membrane/envelope and other structures.Conclusion Lavender essential oil at 3 mg/mL can play an antibacterial effect against multi-drug resistant Acinetobacter baumannii,and its mechanism may be related to the destruction of bacterial biofilm and interference with bacterial metabolism.

Result Analysis
Print
Save
E-mail