1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
3.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
4.Construction and practice of the theory of “turbid toxin pathogenesis” and related prevention and treatment strategies for hepatic encephalopathy in traditional Chinese medicine/Zhuang medicine
Zhipeng WU ; Yuqin ZHANG ; Chun YAO ; Minggang WANG ; Na WANG ; Mengru PENG ; Ningfang MO ; Yaqing ZHENG ; Rongzhen ZHANG ; Dewen MAO
Journal of Clinical Hepatology 2025;41(2):370-374
Hepatic encephalopathy is a difficult and critical disease with rapid progression and limited treatment methods in the field of liver disease, and it is urgently needed to make breakthroughs in its pathogenesis. Selection of appropriate prevention and treatment strategies is of great importance in delaying disease progression and reducing the incidence and mortality rates. This article reviews the theory of “turbid toxin pathogenesis” and related prevention and treatment strategies for hepatic encephalopathy in traditional Chinese medicine/Zhuang medicine, proposes a new theory of “turbid toxin pathogenesis”, analyzes the scientific connotations of “turbid”, “toxin”, and the theory of “turbid toxin pathogenesis”, and constructs the “four-step” prevention and treatment strategies for hepatic encephalopathy, thereby establishing the new clinical prevention and treatment regimen for hepatic encephalopathy represented by “four prescriptions and two techniques” and clarifying the effect mechanism and biological basis of core prescriptions and techniques in the prevention and treatment of hepatic encephalopathy, in order to provide a reference for the prevention and treatment of hepatic encephalopathy.
5.Role of autophagy in treatment of paracetamol-induced liver injury
Guojing XING ; Lifei WANG ; Longlong LUO ; Xiaofeng ZHENG ; Chun GAO ; Xiaohui YU ; Jiucong ZHANG
Journal of Clinical Hepatology 2025;41(2):389-394
N-acetyl-p-aminophenol (APAP) is an antipyretic analgesic commonly used in clinical practice, and APAP overdose can cause severe liver injury and even death. In recent years, the incidence rate of APAP-induced liver injury (AILI) tends to increase, and it has become the second most common cause of liver transplantation worldwide. Autophagy is a highly conserved catabolic process that removes unwanted cytosolic proteins and organelles through lysosomal degradation to achieve the metabolic needs of cells themselves and the renewal of organelles. A large number of studies have shown that autophagy plays a key role in the pathophysiology of AILI, involving the mechanisms such as APAP protein conjugates, oxidative stress, JNK activation, mitochondrial dysfunction, inflammatory response and apoptosis. This article elaborates on the biological mechanism of autophagy in AILI, in order to provide a theoretical basis for the treatment of AILI and the development of autophagy regulators.
6.N-glycosylation Modifications of Immunoglobulins G in Systemic Lupus Erythematosus
Yao-Zhou LIU ; Zheng BIAN ; Chun-Cui HUANG ; Yan LI
Progress in Biochemistry and Biophysics 2025;52(9):2205-2216
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology, primarily characterized by systemic inflammation and hyperactivation of both B and T lymphocytes. Key immunological features include increased consumption of complement components, sustained overproduction of type I interferons (IFN-I), and persistent production of a broad spectrum of autoantibodies, such as anti-dsDNA antibodies. However, the use of autoantibodies as biomarkers for the early detection of SLE is associated with a high false-positive rate, suggesting that antibody characteristics evolve during disease progression.N-glycosylation is a critical post-translational modification of antibodies that significantly influences their structure and receptor-binding properties, thereby modulating biological activities and functions. In particular, glycosylation patterns affect the antibody’s affinity for Fc gamma receptors (FcγRs), subsequently regulating various antibody-mediated immune responses. Numerous studies have investigated the impact of individual monosaccharides—such as sialic acid, fucose, and N-acetylglucosamine, which constitute N-glycans—on the immunological functions of antibodies. This review systematically summarizes the aberrant immunoglobulin G (IgG) N-glycosylation patterns observed in SLE patients, with a focus on correlations between disease progression or complications and quantitative alterations in individual glycan components. We first review how different types of N-glycosylation modifications affect the biological activity and functional properties of IgG, particularly regarding the effects of specific monosaccharides—such as sialic acid, fucose, and galactose—on FcγR binding affinity and the resulting downstream immune functions. We then summarize the differential expression of IgGN-glycans and glycosyltransferase genes between SLE patients and healthy controls, and outline the associations between glycosylation changes and SLE-related pathological responses. In response to the inconsistencies and limitations in current research, we propose potential explanations from the perspectives of study methodologies, participant characteristics, and variations in N-glycan structures, aiming to provide a constructive reference for future studies. Given the close relationship between antibody glycosylation and SLE, this review highlights the potential of IgG N-glycosylation patterns as promising biomarkers for early diagnosis and disease monitoring. In terms of therapy, we discuss how IgG glycosylation can enhance the efficacy of intravenous immunoglobulin (IVIg) treatment and introduce emerging therapeutic strategies that aim to modulate endogenous IgG N-glycans as a novel glycan-based approach for SLE management. In summary, N-glycans are essential structural components of antibodies that regulate immune responses by modulating antibody-receptor interactions. Aberrant glycosylation is closely associated with the pathogenesis of autoimmune diseases, including SLE. However, due to the structural diversity of N-glycans and the complexity of glycosylation processes, the precise roles of IgGN-glycosylation in SLE pathophysiology remain incompletely understood. Moreover, therapeutic strategies targeting IgG glycosylation are still in early development and have not yet reached clinical application. Continued progress in glycan analysis technologies and other biological tools, along with interdisciplinary collaboration, will be essential for advancing this field.
7.Study on anti-myocardial ischemia active components and mechanism of Xinkeshu tablets based on network pharmacology and zebrafish model
Lin-Hua HOU ; Hua-Zheng ZHANG ; Shuo GAO ; Yun ZHANG ; Qiu-Xia HE ; Ke-Chun LIU ; Chen SUN ; Jian-Heng LI ; Qing XIA
Chinese Pharmacological Bulletin 2024;40(5):964-974
Aim To study the active ingredients and mechanism of action of Xinkeshu tablets against myo-cardial ischemia by network pharmacology and ze-brafish model.Methods The anti-myocardial ische-mia activity of Xinkeshu tablets was evaluated by iso-prenaline hydrochloride(ISO)-induced zebrafish myo-cardial ischemia model and H2O2-induced H9c2 dam-age model.The active ingredients of Xinkeshu tablets were retrieved using databases such as TCMSP.The potential targets were predicted by PharmaMapper data-base.Myocardial ischemic disease targets were searched by OMIM database.The potential therapeutic targets of Xinkeshu tablets against myocardial ischemia were analyzed.GO and KEGG enrichment analysis were conducted on core targets.The active ingredients were verified by zebrafish and cell model.qRT-PCR was used to detect the expression of key targets.Re-sults Xinkeshu tablets could significantly alleviate ISO-induced pericardial edema and bradycardia.It al-so could increase sinus venous-bulb aortic(SV-BA)distance and improve the cell viability.The 30 poten-tial active ingredients of Xinkeshu tables mainly acted on 30 core targets,including ALB,AKT1 and MAPK1,to regulate 627 GO items,including protein phosphorylation,negative regulation of apoptosis and positive regulation of PI3K signal transduction.KEGG results showed that 117 signaling pathways,including PI3K/Akt,FOXO and Ras,exerted anti-myocardial ischemia effect.Salvianolic acid A,lithospermic acid,rosmarinic acid,salvianolic acid D,salvianolic acid B,ginsenoside Rg2,hyperoside,3'-methoxypuerarin,3'-hydroxypuerarin and ginsenoside Rg1 could alleviate ISO-induced zebrafish myocardial ischemia and im-prove the cell viability.Xinkeshu tablets could upregu-late the expression of genes such as ras and akt1,and downregulate the expression of genes such as mapk1 and mapk8.Conclusion The active ingredients,in-cluding salvianolic acid A in Xinkeshu tablets,exert anti-myocardial ischemia effects by targeting targets,such as AKT1,MAPK1,and regulating signaling path-ways,such as PI3K/Akt,MAPK and Ras.
8.Development of nanographene oxide as clinical drug carrier in cancer therapy
Chun-Lian ZHONG ; Chang-Jian FANG ; Gui-Yu ZHOU ; Hui-Ling ZHU ; Tang ZHENG ; Wan-Jing ZHUANG ; Jian LIU ; Yu-Sheng LU
Chinese Pharmacological Bulletin 2024;40(8):1413-1418
Immunotherapy is an important breakthrough in canc-er treatment.Unfortunately,low drug concentration in tumor sites almost ineffectively initiates immune responses and thereby severely limits immune therapy applications in clinics.Nanoma-terials are well-recognized drug delivery system in cancer thera-py.Nanographene oxide(NGO)have shown immense perti-nence for anti-cancer drug delivery owing to their ultra-high sur-face area,chemical stability,good biocompatibility and excel-lent photosensitivity.In addition,functionalized modifications on the surface of NGO increase tumor targeting and minimize cy-totoxicity.This study focuses on reviewing the literature and up-dates on NGO in drug delivery and discussing the possibilities and challenges of NGO in cancer synergetic therapy.
9.Polyphyllin Ⅱ induces autophagy of osteosarcoma cells by regulating ROS and endoplasmic reticulum stress
Ya-Min SHI ; Zheng ZHOU ; Meng BIAN ; Chun-Sheng ZHU
Chinese Pharmacological Bulletin 2024;40(12):2340-2346
Aim To investigate the effect of polyphyl-lin Ⅱ(PP Ⅱ)on autophagy of osteosarcoma(OS)cells and its related molecular mechanism.Methods U2OS and HOS cells were cultured in vitro and treated with different concentrations of PP Ⅱ(5,10,15,20 μmol·L-1)for 24 h.The changes of acid vesicles were detected by AO staining,the autophagosomes was ob-served by transmission electron microscopy,the ex-pressions of LC3B-Ⅱ/LC3B-Ⅰ,p62,caspase-3,cleaved caspase-3 were detected by Western blot,the intracellular reactive oxygen species(ROS)was detec-ted by DCFH-DA fluorescence probe,cell viability was detected by CCK-8,cell apoptosis rate was detected by Annexin V-FITC/PⅠ staining.Results PP Ⅱ signifi-cantly increased the number of acidic vesicles(P<0.05,P<0.01)and autophagosomes.PP Ⅱ signifi-cantly up-regulated the ratio of LC3B-Ⅱ/LC3B-Ⅰ,and down-regulated the expression level of p62 protein in a concentration-and time-dependent manner(P<0.05,P<0.01).PP Ⅱ significantly increased intra-cellular ROS levels(P<0.01).Autophagy inhibitor 3-MA and CQ could reverse the regulation of cell via-bility,autophagy and apoptosis related proteins by PP Ⅱ in U2OS cells,endoplasmic reticulum stress inhibi-tor 4-PBA could also reverse the regulation of autoph-agy related proteins by PP Ⅱ in U2OS cells.Conclu-sion PP Ⅱ promotes OS cell autophagy by mediating ROS and endoplasmic reticulum stress.
10.Clinical effects of percutaneous elastic intramedullary nail assisted by arthrography for the treatment of radial neck fractures in children
Hui-Min ZHOU ; Yi-Wen XU ; Chun-Jie TAO ; Jiang-Rong FAN ; Jing-Yang YOU ; Jia-Cheng RUAN ; Si-Qi SHEN ; Zhen WANG ; Yong ZHENG
China Journal of Orthopaedics and Traumatology 2024;37(9):899-904
Objective To explore clinical effect of closed reduction percutaneous elastic intramedullary nail assisted by arthrography in the treatment of radial neck fracture in children.Methods A retrospective analysis was performed on 23 chil-dren with radial neck fracture treated with arthrography assisted closed reduction and percutaneous elastic intramedullary nail internal fixation(arthrography with elastic nail group)from January 2019 to December 2022,including 12 males and 11 fe-males,aged from 2 to 12 years old with an average of(7.36±1.89)years old;According to Judet fracture types,14 children were type Ⅲ and 9 children were type Ⅳ.In addition,23 children with radial neck fracture were selected from January 2015 to December 2018 who were treated with closed reduction and percutaneous elastic intramedullary nail fixation(elastic nail group),including 11 males and 12 females,aged from 2 to 14 years old with an average of(7.50±1.91)years old;Judet classi-fication included 15 children were type Ⅲ and 8 children were type Ⅳ.Operative time and intraoperative fluoroscopy times were compared between two groups.Metaizeau evaluation criteria was used to evaluate fracture reduction,and Tibone-Stoltz evaluation criteria was used to evaluate functional recovery of elbow between two groups.Results Both groups were followed up for 12 to 24 months with an average of(16.56±6.34)months.Operative time and intraoperative fluoroscopy times of elastic nail group were(56.64±19.27)min and(21.13±7.87)times,while those of joint angiography with elastic nail group were(40.33±1 1.50)min and(12.10±3.52)times;there were difference between two groups(P<0.05).According to Metaizeau evaluation,11 patients got excellent result,9 good and 3 fair in joint angiography with elastic nail group,while in elastic nail group,5 ex-cellent,13 good,4 acceptable,and 1 poor;the difference between two groups was statistically significant(P<0.05).According to Tibone-Stoltz criteria,14 patients got excellent result,8 good,and 1 fair in joint arthrography with elastic nail group;while in elastic nail group,12 patients got excellent result,9 good,1 fair and 1 poor;there was no significant difference between two groups(P>0.05).Conclusion Compared to percutaneous elastic intramedullary nail fixation,closed reduction assisted by arthrography has advantages of reduced operation time,decreased intraoperative fluoroscopy frequency,and improved fracture reduction.Arthrography enables clear visualization of the anatomical structures of radius,head,neck,bone,and cartilage in children,facilitating comprehensive display of fracture reduction and brachioradial joint alignment.This technique more pre-cisely guides the depth of elastic intramedullary nail implantation in radius neck,thereby enhancing surgical efficiency and success rate.

Result Analysis
Print
Save
E-mail