1.Application and progress of intelligent responsive hydrogels in articular cartilage injury repair.
Qingyu XU ; Baojian ZHANG ; Hongri LI ; Chengri LIU ; Shuhao BI ; Zhixiang YANG ; Yanqun LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):250-256
OBJECTIVE:
To review clinical application and research progress of different types of intelligent responsive hydrogels in repairing articular cartilage injury.
METHODS:
The animal experiments and clinical studies of different types of intelligent responsive hydrogels for repairing articular cartilage injury were summarized by reviewing relevant literature at home and abroad.
RESULTS:
The intrinsic regenerative capacity of articular cartilage following injury is limited. Intelligent responsive hydrogels, including those that are temperature-sensitive, light-sensitive, enzyme-responsive, pH-sensitive, and other stimuli-responsive hydrogels, can undergo phase transitions in response to specific stimuli, thereby achieving optimal functionality. These hydrogels can fill the injured cartilage area, promote the proliferation and differentiation of chondrocytes, and expedite the repair of the damaged site. With advancements in cartilage tissue engineering materials research, intelligent responsive hydrogels offer a novel approach and promising potential for the treatment of cartilage injuries.
CONCLUSION
Intelligent responsive hydrogel is a kind of flexible, controllable, efficient, and stable polymer, which has similar structure and functional properties to articular cartilage, and has become one of the important biomaterials for cartilage repair. However, there is still a lack of unified treatment standards and simple and efficient preparation technology.
Hydrogels/therapeutic use*
;
Cartilage, Articular/injuries*
;
Tissue Engineering/methods*
;
Humans
;
Animals
;
Chondrocytes/cytology*
;
Biocompatible Materials/chemistry*
;
Tissue Scaffolds/chemistry*
2.Effect of mechanical stimuli on physicochemical properties of joint fluid in osteoarthritis.
Han YAO ; Aixian TIAN ; Jianxiong MA ; Xinlong MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):903-911
OBJECTIVE:
To analyze the differences in the effects of different mechanical stimuli on cells, cytokines, and proteins in synovial fluid of osteoarthritis joints, and to elucidate the indirect mechanism by which mechanical signals remodel the synovial fluid microenvironment through tissue cells.
METHODS:
Systematically integrate recent literature, focusing on the regulatory effects of different mechanical stimuli on the physicochemical properties of synovial fluid. Analyze the dynamic process by which mechanical stimuli regulate secretory and metabolic activities through tissue cells, thereby altering the physicochemical properties of cytokines and proteins.
RESULTS:
Appropriate mechanical stimuli activate mechanical signals in chondrocytes, macrophages, and synovial cells, thereby influencing cellular metabolic activities, including inhibiting the release of pro-inflammatory factors and promoting the secretion of anti-inflammatory factors, and regulating the expression of matrix and inflammation-related proteins such as cartilage oligomeric matrix protein, peptidoglycan recognition protein 4, and matrix metalloproteinases.
CONCLUSION
Mechanical stimuli act on tissue cells, indirectly reshaping the synovial fluid microenvironment through metabolic activities, thereby regulating the pathological process of osteoarthritis.
Humans
;
Osteoarthritis/physiopathology*
;
Synovial Fluid/chemistry*
;
Chondrocytes/metabolism*
;
Cytokines/metabolism*
;
Macrophages/metabolism*
;
Stress, Mechanical
;
Cartilage Oligomeric Matrix Protein/metabolism*
;
Matrix Metalloproteinases/metabolism*
;
Synovial Membrane/cytology*
3.Research progress on the regulation of Hippo -YAP signaling pathway in osteoarthritis.
Xi-Yao TAI ; De-Cai HOU ; Jiang ZHANG ; Xiao-Lei DENG
China Journal of Orthopaedics and Traumatology 2025;38(7):759-764
Osteoarthritis (OA) is the most common degenerative joint disease. Its pathological process is related to inflammatory response, chondrocyte apoptosis, and cartilage degeneration. Hippo-yes-associate protein(YAP) signaling pathway plays an important role in mediating organ size and tissue homeostasis. In recent years, the key effector protein YAP in the Hippo-YAP pathway has become a research hotspot in osteoarthritis. This article introduces the activation process of Hippo-YAP signaling pathway and the biological role of YAP. It reviews the progress of YAP in regulating osteoarthritis by influencing the proliferation and differentiation of mesenchymal stem cells and the proliferation, differentiation, and apoptosis of articular chondrocytes. It analyzed the problems encountered in YAP research in OA, introduces the research potential of YAP in other orthopedic diseases, and provides new ideas for subsequent research in Osteoarthritis.
Osteoarthritis/metabolism*
;
Humans
;
Signal Transduction
;
Protein Serine-Threonine Kinases/physiology*
;
Hippo Signaling Pathway
;
YAP-Signaling Proteins
;
Adaptor Proteins, Signal Transducing/physiology*
;
Animals
;
Transcription Factors
;
Chondrocytes/cytology*
;
Cell Cycle Proteins
4.Mechanism by which mechanical stimulation regulates chondrocyte apoptosis and matrix metabolism via primary cilia to delay osteoarthritis progression.
Huixian LING ; Sha WU ; Ziyu LUO ; Yuyan SUN ; Hongwei SHEN ; Haiqi ZHOU ; Yuanyuan FU ; Wen WANG ; Thai Namanh NGO ; Ying KONG
Journal of Central South University(Medical Sciences) 2025;50(5):864-875
OBJECTIVES:
Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
METHODS:
In vivo, conditional knockout mice lacking intraflagellar transport 88 (IFT88flox/flox IFT88 knockout; i.e., primary cilia-deficient mice) were generated, with wild-type mice as controls. OA models were established via anterior cruciate ligament transection combined with destabilization of the medial meniscus, followed by treadmill exercise intervention. OA progression was evaluated by hematoxylin-eosin staining, safranin O-fast green staining, and immunohistochemistry; apoptosis was assessed by TUNEL staining; and limb function by rotarod testing. In vitro, primary articular chondrocytes were isolated from mice and transfected with lentiviral vectors to suppress IFT88 expression, thereby constructing a primary cilia-deficient cell model. Interleukin-1β (IL-1β) was used to induce an inflammatory environment, while cyclic tensile strain (CTS) was applied via a cell stretcher to mimic mechanical loading on chondrocytes. Immunofluorescence and Western blotting were used to detect the protein expression levels of type II collagen α1 chain (COL2A1), primary cilia, IFT88, and caspase-12; reverse transcription polymerase chain reaction was performed to assess COL2A1 mRNA levels; and flow cytometry was used to evaluate apoptosis.
RESULTS:
In vivo, treadmill exercise significantly reduced Osteoarthritis Research Society International (OARSI) scores and apoptotic cell rates, and improved balance ability in wild-type OA mice, whereas IFT88-deficient OA mice showed no significant improvement. In vitro, CTS inhibited IL-1β-induced ECM degradation and apoptosis in primary chondrocytes; however, this protective effect was abolished in cells with suppressed primary cilia expression.
CONCLUSIONS
Mechanical stimulation delays OA progression by mediating signal transduction through primary cilia, thereby inhibiting cartilage degeneration and chondrocyte apoptosis.
Animals
;
Chondrocytes/cytology*
;
Apoptosis/physiology*
;
Mice
;
Cilia/metabolism*
;
Osteoarthritis/pathology*
;
Extracellular Matrix/metabolism*
;
Mice, Knockout
;
Disease Progression
;
Interleukin-1beta
;
Male
;
Cells, Cultured
5.Pig meniscus single-cell sequencing reveals highly active red zone chondrocyte populations involved in stemness maintenance and vascularization development.
Monika MANKOWSKA ; Monika STEFANSKA ; Anna Maria MLECZKO ; Katarzyna SARAD ; Witold KOT ; Lukasz KRYCH ; Julia Anna SEMBA ; Eric Lars-Helge LINDBERG ; Jakub Dalibor RYBKA
Journal of Zhejiang University. Science. B 2025;26(7):675-693
Meniscus injuries are widespread and the available treatments do not offer enough healing potential. Here, we provide critical support for using pigs as a biological model for meniscal degeneration and the development of cutting-edge therapies in orthopedics. We present a single-cell transcriptome atlas of the meniscus, consisting of cell clusters corresponding to four major cell types: chondrocytes, endothelial cells, smooth muscle cells, and immune cells. Five distinct chondrocyte subclusters (CH0‒CH4) were annotated, of which only one was widespread in both the red and white zones, indicating a major difference in the cellular makeup of the zones. Subclusters distinct to the white zone appear responsible for cartilage-specific matrix deposition and protection against adverse microenvironmental factors, while those in the red zone exhibit characteristics of mesenchymal stem cells and are more likely to proliferate and migrate. Additionally, they induce remodeling actions in other chondrocyte subclusters and promote the proliferation and maturation of endothelial cells, inducing healing and vascularization processes. Considering that they have substantial remodeling capabilities, these subclusters should be of great interest for tissue engineering studies. We also show that the cellular makeup of the pig meniscus is comparable to that of humans, which supports the use of pigs as a model in orthopedic therapy development.
Animals
;
Swine
;
Chondrocytes/physiology*
;
Single-Cell Analysis
;
Meniscus/blood supply*
;
Endothelial Cells/cytology*
;
Transcriptome
;
Mesenchymal Stem Cells/cytology*
;
Neovascularization, Physiologic
;
Cell Proliferation
6.Effect of quercetin on chondrocyte phenotype and extracellular matrix expression.
Zhi-Peng GUI ; Yue HU ; Yu-Ning ZHOU ; Kai-Li LIN ; Yuan-Jin XU
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):922-933
Due to the poor repair ability of cartilage tissue, regenerative medicine still faces great challenges in the repair of large articular cartilage defects. Quercetin is widely applied as a traditional Chinese medicine in tissue regeneration including liver, bone and skin tissues. However, the evidence for its effects and internal mechanisms for cartilage regeneration are limited. In the present study, the effects of quercetin on chondrocyte function were systematically evaluated by CCK8 assay, PCR assay, cartilaginous matrix staining assays, immunofluorescence assay, and western blotting. The results showed that quercetin significantly up-regulated the expression of chondrogenesis genes and stimulated the secretion of GAG (glycosaminoglycan) through activating the ERK, P38 and AKT signalling pathways in a dose-dependent manner. Furthermore, in vivo experiments revealed that quercetin-loaded silk protein scaffolds dramatically stimulated the formation of new cartilage-like tissue with higher histological scores in rat femoral cartilage defects. These data suggest that quercetin can effectively stimulate chondrogenesis in vitro and in vivo, demonstrating the potential application of quercetin in the regeneration of cartilage defects.
Animals
;
Cartilage/cytology*
;
Chondrocytes/drug effects*
;
Chondrogenesis/drug effects*
;
Extracellular Matrix/metabolism*
;
Quercetin/pharmacology*
;
Rats
;
Signal Transduction/drug effects*
;
Tissue Scaffolds
7.Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes by inhibiting activation of ERK signaling pathway.
Min LIU ; Weiwei XIE ; Wei ZHENG ; Danyang YIN ; Rui LUO ; Fengjin GUO
Journal of Southern Medical University 2019;39(2):134-143
OBJECTIVE:
To investigate the effect of estradiol (E2)/estrogen receptor 1 (ESR1) on the proliferation of human chondrocytes and explore the molecular mechanism.
METHODS:
The Ad-Easy adenovirus packaging system was used to construct and package the ESR1-overexpressing adenovirus Ad-ESR1. Western blotting and qPCR were used to detect the expression of ESR1 protein and mRNA in human chondrocyte C28I2 cells. In the cells treated with different adenoviruses, the effects of E2 were tested on the expressions of proteins related with cell autophagy and apoptosis and the phosphorylation of ERK signaling pathway using Western blotting. Immunofluorescence assay was used to observe the intracellular autophagic flow, flow cytometry was performed to analyze the cell apoptosis rate and the cell cycle changes, and qPCR was used to detect the expressions of PCNA, cyclin B1 and cyclin D1 mRNAs. The inhibitory effect of the specific inhibitor of ERK on the expressions of autophagy- and apoptosis-related genes at both the protein and mRNA levels were detected using Western blotting and qPCR.
RESULTS:
Transfection with the recombinant adenovirus overexpressing ESR1 and E2 treatment of C28I2 cells significantly enhanced the expressions of autophagy-related proteins LC3, ATG7, promoted the colocalization of LC3 and LAMP1 in the cytoplasm, increased the expressions of the proliferation-related marker genes PCNA, cyclin B1 and cyclin D1, and supressed the expressions of cleaved caspase-3, caspase-12 and pERK. RNA interference of ESR1 obviously lowered the expression levels of autophagy-related proteins in C28I2 cells, causing also suppression of the autophagic flow, increments of the expressions of apoptosis-related proteins and pERK, and down-regulated the expressions of the proliferation marker genes. Blocking ERK activation with the ERK inhibitor obviously inhibited the effects of E2/ESR1 on autophagy, proliferationrelated gene expressions and cell apoptosis.
CONCLUSIONS
The targeted binding of E2 with ESR1 promotes the proliferation of human chondrocytes possibly by inhibiting the activation of ERK signaling pathway to promote cell autophagy and induce cell apoptosis.
Adenoviridae
;
metabolism
;
Apoptosis
;
Autophagy
;
Autophagy-Related Protein 7
;
metabolism
;
Cell Line
;
Cell Proliferation
;
Chondrocytes
;
cytology
;
metabolism
;
Estradiol
;
metabolism
;
Estrogen Receptor alpha
;
metabolism
;
Humans
;
Lysosome-Associated Membrane Glycoproteins
;
metabolism
;
MAP Kinase Signaling System
;
Microtubule-Associated Proteins
;
metabolism
;
Transfection
8.Development of cartilage extracellular matrix in cartilage tissue engineering.
Yun-Jie LI ; Yan-Hong ZHAO ; Qiang YANG
West China Journal of Stomatology 2019;37(2):220-223
Cartilage tissue engineering, an effective way to repair cartilage defects, requires an ideal scaffold to promote the regeneration performance of stem cells. Cartilage extracellular matrix (CECM) can imitate the living environment of cartilage cells to the greatest extent. CECM not only exhibits good biocompatibility with chondrocytes and stem cells, which can meet the basic requirements of scaffolds, but also promotes chondrocytes to secrete matrix and induce stem cells to differentiate into chondrocytes; as such, this matrix is a better scaffold and has more advantages than existing ones. The promotion and induction effects could be related to various cartilage-related proteins inside. However, the practical application of this technique is hindered by problems, such as poor mechanical properties and insufficient cell penetration of CECM. Association with other materials can compensate for these inadequacies to a certain degree, and finding a combination mode with optimized performance is the application trend of CECM. This review focuses on research of CECM materials in cartilage tissue engineering.
Cartilage
;
cytology
;
Chondrocytes
;
Extracellular Matrix
;
Tissue Engineering
;
Tissue Scaffolds
9.Mechanical stress promotes cartilage repair in inflammatory environment.
Wangxiang YAO ; Hanghao DAI ; Jianchao GUI
Journal of Zhejiang University. Medical sciences 2019;48(5):517-525
OBJECTIVE:
To investigate the effect and mechanism of mechanical stress on cartilage repair in inflammatory environment.
METHODS:
The chondrogenic progenitor cells (CPCs) were isolated from the knee joint cartilage of patients with osteoarthritis (OA) undergoing total knee arthroplasty. The CPCs were cultured and expanded in a 3-D scaffold constructed with alginate. Intermittent hydrostatic pressure (IHP) was applied in a inflammatory environment induced by IL-1β, and Western blot was used to detect the expression of MAPK signaling pathway proteins. Cell proliferation was detected by CCK-8 method, and the expression of related genes like matrix metallo-proteinases 13 (MMP-13) and a disintegrins and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) was detected by real-time RT-PCR. The anterior cruciate ligament of the rats was cut to construct the knee joint OA model, and the appropriate mechanical stress was constructed with external fixation to distract the knee joint in order to observe the repair of the cartilage and to explore its mechanism.
RESULTS:
Adding 0.01 ng/ml IL-1β in cell culture inhibited the proliferation of CPCs. After IHP application, the expression of MAPK pathway protein was decreased, the mRNA expression of MMP-13 and ADAMTS-5 was reduced. The inhibition of IL-1β on CPCs was counteracted by IHP. Four weeks after the anterior cruciate ligament resected, the articular cartilage degeneration was observed in rats. The Mankin score in the OA treatment (joint distraction) group was lower, and the cartilage repair was better than that of the control group (<0.01). Animal experiments found that the suitable mechanical stress reduced the expression of P-p38, MMP-13 and COLL-X, inhibited cartilage cells apoptosis and promoted the repair of OA cartilage.
CONCLUSIONS
Mechanical stress can promote the proliferation of CPCs, reduce the expression of matrix degrading enzymes, and promote the repair of OA cartilage by inhibiting MAPK signaling pathway.
Animals
;
Anterior Cruciate Ligament
;
pathology
;
surgery
;
Cartilage, Articular
;
pathology
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
Disease Models, Animal
;
Gene Expression Profiling
;
Humans
;
Mitogen-Activated Protein Kinases
;
genetics
;
Osteoarthritis
;
pathology
;
Polymerase Chain Reaction
;
Rats
;
Signal Transduction
;
genetics
;
Stress, Mechanical
10.Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy.
Zhu CHEN ; Shang DENG ; De-Chao YUAN ; Kang LIU ; Xiao-Cong XIANG ; Liang CHENG ; Dong-Qin XIAO ; Li DENG ; Gang FENG
Journal of Zhejiang University. Science. B 2018;19(12):910-923
OBJECTIVE:
To construct a novel non-viral vector loaded with growth and differentiation factor-5 (GDF-5) plasmid using chitosan, hyaluronic acid, and chondroitin sulfate for osteoarthritis (OA) gene therapy.
METHODS:
Nano-microspheres (NMPs) were prepared by mixing chitosan, hyaluronic acid, and chondroitin sulfate. GDF-5 plasmid was encapsulated in the NMPs through electrostatic adsorption. The basic characteristics of the NMPs were observed, and then they were co-cultured with chondrocytes to observe their effects on extracellular matrix (ECM) protein expression. Finally, NMPs loaded with GDF-5 were injected into the articular cavities of rabbits to observe their therapeutic effects on OA in vivo.
RESULTS:
NMPs exhibited good physicochemical properties and low cytotoxicity. Their average diameter was (0.61±0.20) μm, and encapsulation efficiency was (38.19±0.36)%. According to Cell Counting Kit-8 (CCK-8) assay, relative cell viability was 75%-99% when the total weight of NMPs was less than 560 μg. Transfection efficiency was (62.0±2.1)% in a liposome group, and (60.0±1.8)% in the NMP group. There was no significant difference between the two groups (P>0.05). Immunohistochemical staining results suggested that NMPs can successfully transfect chondrocytes and stimulate ECM protein expression in vitro. Compared with the control groups, the NMP group significantly promoted the expression of chondrocyte ECM in vivo (P<0.05), as shown by analysis of the biochemical composition of chondrocyte ECM. When NMPs were injected into OA model rabbits, the expression of ECM proteins in chondrocytes was significantly promoted and the progression of OA was slowed down.
CONCLUSIONS
Based on these data, we think that these NMPs with excellent physicochemical and biological properties could be promising non-viral vectors for OA gene therapy.
Animals
;
Cell Differentiation
;
Cell Survival/drug effects*
;
Chitosan/chemistry*
;
Chondrocytes/cytology*
;
Chondroitin Sulfates/chemistry*
;
Drug Carriers
;
Extracellular Matrix/metabolism*
;
Genetic Therapy/methods*
;
Growth Differentiation Factor 5/genetics*
;
Hyaluronic Acid/chemistry*
;
Microspheres
;
Nanomedicine
;
Osteoarthritis/therapy*
;
Plasmids/metabolism*
;
Rabbits

Result Analysis
Print
Save
E-mail