1.Effect of Compatibility of Effective Monomer Components of Fujin Shengjisan on Angiogenesis of HUVEC Based on Uniform Design
Xianying LU ; Jing GAO ; Dingxi BAI ; Chaoming HOU ; Wenting JI ; Huan CHEN ; Chenxi WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):9-20
ObjectiveTo determine the optimal combination of the effective monomer components "quercetin-kaempferol-abietic acid-boswellic acid" in Fujin Shengjisan for promoting diabetic ulcer (DU) wound healing through uniform design, thereby achieving the modern application of the ancient formula. MethodsFollowing the principle of "uniform design-pharmacodynamic experiment-mathematical modeling and model verification", the U14(145) uniform design table was adopted.The four monomer components of Chinese medicine were considered as the independent variables, and the proliferation rate of human umbilical vein endothelial cells (HUVECs) induced by glucose was used as the pharmacodynamic indicator. A mathematical model was constructed using DPS software to correlate the effective monomer components with the pharmacodynamic indicator. The results of uniform design were verified through CCK-8 assay, cell scratch healing, tube formation, Western blot, and Real-time PCR. ResultsAmong the 14 compatibility groups, compared with the high-glucose model group, compound compatibility group 6 showed the strongest proliferation effect and statistical significance (P<0.05). Four quadratic polynomial regression equations (Y1-Y4) were obtained through DPS modeling. Considering the model's fit, stability, and practical application, equations Y1-Y3 were selected for the follow-up verification. To ensure experiment reproducibility, group 6 was used for validation. Group 6 and equations Y1-Y3 were renamed as compound prescription ① to compound prescription④, respectively, to represent the modern application of the ancient FJSJ Powder through compatibility of monomer components. Verification experiments showed that in the CCK-8, scratch healing, and tube formation assays, the cell viability, wound healing rate, and tube formation number of HUVECs stimulated with 50 mmol·L-1 glucose were significantly reduced compared with the blank group. Moreover, the expression levels of angiogenesis-related cytokines, vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), and CD31 secretion were significantly down-regulated. However, after intervention with compound prescriptions ① to ④, compound prescriptions ① and ③ significantly improved the biological functions of HUVECs induced by 50 mmol·L-1 glucose. Further analysis of the regression coefficients of compound prescriptions ① and ③, and the relative dose ratios of each monomer component, indicated that abietic acid, quercetin, and boswellic acid promoted angiogenesis of HUVECs in the high glucose environment, with a major effect (positive partial correlation coefficients, all > 0.9). Abietic acid and boswellic acid, as well as kaempferol and boswellic acid, promoted angiogenesis in HUVECs through interaction (positive partial correlation coefficients). ConclusionCompound prescriptions ① and ③ are the optimal combinations. They can reverse the inhibitory effects of high glucose, stimulate the proliferation, migration, and tube formation abilities of HUVECs in a high glucose environment, and promote the expression of vascular endothelial growth factorA(VEGFA), FGF2, and CD31, thereby promoting angiogenesis and facilitating DU wound healing. This finding not only confirms the good reproducibility and feasibility of compound prescriptions ① and ③ but also provides new insights and methods for the rational construction of mathematical models to further study the compatibility theory of Chinese medicine.
2.Application of delayed replantation of degloving skin preserved at 4 ℃ in treatment of limb degloving injuries.
Qianqian XU ; Jihai XU ; Yijun SHEN ; Chenxi ZHANG ; Hangchong SHEN ; Tianxiang HUANG ; Chenlin LU ; Xin WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):95-99
OBJECTIVE:
To investigate the effectiveness of delayed replantation of degloving skin preserved at 4℃ in treatment of limb degloving injuries.
METHODS:
Between October 2020 and October 2023, 12 patients with limb degloving injuries were admitted. All patients had severe associated injuries or poor wound conditions that prevented primary replantation. There were 7 males and 5 females; age ranged from 29 to 46 years, with an average of 39.2 years. The causes of injury included machine entanglement in 6 cases, traffic accidents in 5 cases, and sharp instrument cuts in 1 case. Time from injury to hospital admission was 0.5-3.0 hours, with an average of 1.3 hours. Injury sites included upper limbs in 7 cases and lower limbs in 5 cases. The range of degloving skin was from 5 cm×4 cm to 15 cm×8 cm, and all degloving skins were intact. The degloving skin was preserved at 4℃. After the patient's vital signs became stable and the wound conditions improved, it was trimmed into medium-thickness skin grafts for replantation. The degloving skin was preserved for 3 to 7 days. At 4 weeks after replantation, the viability of the degloving skin grafts was assessed, including color, elasticity, and sensation of pain. The Vancouver Scar Scale (VSS) was used to assess the scars of the skin grafts during follow-up.
RESULTS:
At 4 weeks after replantation, 8 cases of skin grafts completely survived and the color was similar with normal skin, with a survival rate of 66.67%. The elasticity of skin grafts (R0 value) ranged from 0.09 to 0.85, with an average of 0.55; moderate pain was reported in 4 cases, mild pain in 3 cases, and no pain in 5 cases. All patients were followed up 12 months. Over time, the VSS scores of all 12 patients gradually decreased, with a range of 4-11 at 12 months (mean, 6.8).
CONCLUSION
For limb degloving injuries that cannot be replanted immediately and do not have the conditions for deep low-temperature freezing preservation, the method of preserving the degloving skin at 4℃ for delayed replantation can be chosen.
Humans
;
Male
;
Adult
;
Replantation/methods*
;
Female
;
Degloving Injuries/surgery*
;
Middle Aged
;
Skin Transplantation/methods*
;
Treatment Outcome
;
Extremities/injuries*
;
Time Factors
;
Skin/injuries*
;
Tissue Preservation/methods*
3.Erratum: Author correction to "SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade" Acta Pharm Sin B 9 (2019) 304-315.
Mingxia ZHAO ; Wenjie GUO ; Yuanyuan WU ; Chenxi YANG ; Liang ZHONG ; Guoliang DENG ; Yuyu ZHU ; Wen LIU ; Yanhong GU ; Yin LU ; Lingdong KONG ; Xiangbao MENG ; Qiang XU ; Yang SUN
Acta Pharmaceutica Sinica B 2025;15(5):2810-2812
[This corrects the article DOI: 10.1016/j.apsb.2018.08.009.].
4.Compound Centella asiatica formula alleviates Schistosoma japonicum-induced liver fibrosis in mice by inhibiting the inflammation-fibrosis cascade via regulating the TLR4/MyD88 pathway.
Liping GUAN ; Yan YAN ; Xinyi LU ; Zhifeng LI ; Hui GAO ; Dong CAO ; Chenxi HOU ; Jingyu ZENG ; Xinyi LI ; Yang ZHAO ; Junjie WANG ; Huilong FANG
Journal of Southern Medical University 2025;45(6):1307-1316
OBJECTIVES:
To explore the therapeutic mechanism of compound Centella asiatica formula (CCA) for alleviating Schistosoma japonicum (Sj)-induced liver fibrosis in mice.
METHODS:
The active components and targets of CCA were identified using the TCMSP database with cross-analysis of Sj-related liver fibrosis targets. A "drug-component-target-pathway-disease" network was constructed using Cytoscape 3.9.1. Functional enrichment analysis (GO/KEGG) was performed using DAVID. Molecular docking study was carried out to validate interactions between the core targets and the key compounds. For experimental validation of the results, 36 mice were divided into control group, Sj-infected model group, and CCA-treated groups. In the latter two groups, liver fibrosis was induced via abdominal infection with Sj cercariae for 8 weeks, followed by 8 weeks of daily treatment with CCA decoction or saline. Hepatic pathology of the mice was assessedwith HE and Masson staining, and hepatic expressions of collagen-I and collagen-III were detected using immunohistochemistry; serum IL-6 and TNF-α levels were determined with ELISA. Hepatic expressions of TLR4 and MyD88 proteins were analyzed with Western blotting.
RESULTS:
We identified a total of 107 bioactive CCA components and 791 targets, including 37 intersection targets linked to Sj-induced fibrosis. The core targets included TNF, TP53, JUN, MMP9, and CXCL8, involving the IL-17 signaling, lipid metabolism, TLR4/MyD88 axis, and cancer pathways. Molecular docking study confirmed strong binding affinity between quercetin (a primary CCA component) and TNF/TP53/JUN/MMP9. In Sj-infected mouse models, CCA treatment significantly attenuated hepatic inflammatory cell infiltration, reduced collagen-I and collagen-III deposition, improved tissue architecture, reduced serum IL-6 and TNF-α levels, and downregulated TLR4 and MyD88 expressions in the liver.
CONCLUSIONS
CCA mitigates Sj-induced liver fibrosis by targeting TNF, TP53, JUN, and MMP9 to modulate the TLR4/MyD88 pathway, thereby suppressing pro-inflammatory cytokine release, inhibiting hepatic stellate cell activation, reducing collagen deposition, and preventing granuloma formation in the liver.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Mice
;
Myeloid Differentiation Factor 88/metabolism*
;
Schistosoma japonicum
;
Liver Cirrhosis/parasitology*
;
Schistosomiasis japonica
;
Signal Transduction
;
Molecular Docking Simulation
;
Inflammation
;
Centella/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis
6.(±)-Talapyrones A-F: six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromycesadpressus.
Meijia ZHENG ; Xinyi ZHAO ; Chenxi ZHOU ; Hong LIAO ; Qin LI ; Yuling LU ; Bingbing DAI ; Weiguang SUN ; Ying YE ; Chunmei CHEN ; Yonghui ZHANG ; Hucheng ZHU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):932-937
(±)-Talapyrones A-F (1-6), six pairs of dimeric polyketide enantiomers featuring unusual 6/6/6 and 6/6/6/5 ring systems, were isolated from the fungus Talaromyces adpressus. Their structures were determined by spectroscopic analysis and HR-ESI-MS data, and their absolute configurations were elucidated using a modified Mosher's method and electronic circular dichroism (ECD) calculations. (±)-Talapyrones A-F (1-6) possess a 6/6/6 tricyclic skeleton, presumably formed through a Michael addition reaction between one molecule of α-pyrone derivative and one molecule of C8 poly-β-keto chain. In addition, compounds 2/3 and 4/5 are two pairs of C-18 epimers, respectively. Putative biosynthetic pathways of 1-6 were discussed.
Polyketides/isolation & purification*
;
Talaromyces/chemistry*
;
Stereoisomerism
;
Molecular Structure
;
Circular Dichroism
;
Pyrones/chemistry*
7.A meta-analysis of the association between green space and dyslipidemia
Chenxi LUO ; Tianjing HE ; Jicheng ZHU ; Yiyi HUANG ; Lu MA ; Yang LI
Journal of Public Health and Preventive Medicine 2024;35(5):10-14
Objective To explore the association between green space and the risk of dyslipidemia. Methods “Dyslipidemia” and “ Normalized Difference Vegetation Index (NDVI)” were used as search terms to search PubMed, Embase, and Web of Science databases for studies up to September 2023. ARHQ statistical assessment and review tool and NOS scale were employed to evaluate the quality of the studies. R 4.3.1 software was used for meta-analysis. Results A total of 11 studies were included, of which 5 cross-sectional studies and 5 cohort studies were rated as “high quality”. The results of meta-analysis showed that an increase in NDVI in some buffer zones was associated with reduced risks of hypercholesterolemia, hypertriglyceridemia, low HDL-C, and high LDL-C, while an increase in NDVI in 100m buffer zone was significantly associated with reduced risks of all these four diseases, with hypercholesterolemia (OR=0.87, P<0.05), hypertriglyceridemia (OR=0.94, P<0.05), low HDL-C (OR=0.95, P<0.05), and high LDL-C (OR=0.87, P<0.05). Sensitivity analysis suggested that the results of most meta-analyses were robust. Conclusion With the increase in green space near residential areas, the risk of dyslipidemia may decrease.
8.Application of artificial intelligence assists bone marrow cytomorphology analysis in the diagnosis and treatment of acute myeloid leukemia
Jigang XIAO ; Huijun WANG ; Wenyu CAI ; Shuying CHEN ; Ge SONG ; Xulin LU ; Chenxi LIU ; Zhigang WANG ; Chao FANG ; Yanan CHEN ; Zhijian XIAO
Chinese Journal of Laboratory Medicine 2023;46(3):274-279
Objective:To investigate the value of artificial intelligence (AI) cytomorphologic analysis system in the cytomorphological diagnosis and therapeutic evaluation of acute myeloid leukemia (AML).Methods:Bone marrow smear samples were collected from 150 patients with newly diagnosed and treated acute myeloid leukemia who were inpatients and outpatients at the Department of Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College from June 1, 2021 to July 31, 2022 for retrospective analysis. Among them, there were 50 patients in the newly diagnosed group, including 28 males and 22 females, with the onset age of 43.5(32.3,58.8)years. There were 100 patients in the post-treatment group, including 36 males and 64 females, with the onset age of 34.5(23.0,47.0)years. The results from cytomorphology expert were used as the gold standard and the Python 3.6.7 was used for analysis to evaluate the accuracy, sensitivity, and specificity of the AI cytomorphologic analysis system for blast cell recognition in AML diagnosis and treatment.Results:The proportion of blasts in AI analysis of 50 samples in the newly diagnosed group was≥20%, which met the diagnostic criteria of AML. AI analysis of blasts had an accuracy of 90.3%, sensitivity of 85.5%, and specificity of 98.0%. The correlation coefficient between AI and the proportion of blasts analyzed by experts was positively correlated( r=0.882, P<0.001). Meanwhile, in the post-treatment group, the sensitivity and specificity of AI analysis of blasts were 89.7% and 99.2%, respectively. The correlation coefficient between AI and the proportion of blasts analyzed by experts was positively correlated( r=0.957, P<0.001). According to AI analysis data, there are 8 samples in this group whose AI efficacy evaluation results on AML are inconsistent with expert analysis. Conclusion:AI cytomorphologic analysis system has high accuracy, sensitivity and specificity for blast cell recognition in AML morphological diagnosis and therapeutic evaluation.
9.MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts.
Qingyuan YE ; Xinyu QIU ; Jinjin WANG ; Boya XU ; Yuting SU ; Chenxi ZHENG ; Linyuan GUI ; Lu YU ; Huijuan KUANG ; Huan LIU ; Xiaoning HE ; Zhiwei MA ; Qintao WANG ; Yan JIN
International Journal of Oral Science 2023;15(1):7-7
Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.
Creatine/metabolism*
;
Extracellular Vesicles
;
Muscle, Skeletal/metabolism*
;
Myoblasts/metabolism*
;
Regeneration
;
Connexins/metabolism*
10.Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress.
Bingdong SUI ; Jin LIU ; Chenxi ZHENG ; Lei DANG ; Ji CHEN ; Yuan CAO ; Kaichao ZHANG ; Lu LIU ; Minyan DANG ; Liqiang ZHANG ; Nan CHEN ; Tao HE ; Kun XUAN ; Fang JIN ; Ge ZHANG ; Yan JIN ; Chenghu HU
International Journal of Oral Science 2022;14(1):39-39
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Adrenergic Agents/pharmacology*
;
Apoptosis Regulatory Proteins/pharmacology*
;
Bone Diseases, Metabolic/metabolism*
;
Humans
;
Liposomes
;
MicroRNAs/genetics*
;
Nanoparticles
;
Osteoclasts
;
Osteogenesis/physiology*
;
RNA-Binding Proteins/pharmacology*


Result Analysis
Print
Save
E-mail