1.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
2.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
3.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
4.Zhiwei Fuwei Pills regulate miRNA-21/Bcl-2 pathway to improve mitochondrial apoptosis in rats with precancerous lesions of gastric cancer.
Jiao-Jiao ZUO ; Rui-Ping SONG ; Peng-Cheng DOU ; Xin-Yi CHEN ; Zhuang-Zhuang FENG ; Jin SHU
China Journal of Chinese Materia Medica 2025;50(15):4342-4351
This study aimed to investigate the effects of Zhiwei Fuwei Pills on mitochondrial apoptosis in the rat model of precancerous lesions of gastric cancer(PLGC) based on the microRNA-21(miRNA-21)/B-cell lymphoma-2(Bcl-2) signaling pathway. Eighty-five 5-week-old male SPF-grade SD rats were selected, of which 75 were fed with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) for multifactorial modeling, and the PLGC model was established after 26 weeks. The rats were randomly grouped as follows: model, folic acid(0.002 g·kg~(-1)), low-dose(0.42 g·kg~(-1)) Zhiwei Fuwei Pills, medium-dose(0.84 g·kg~(-1)) Zhiwei Fuwei Pills, and high-dose(1.67 g·kg~(-1)) Zhiwei Fuwei Pills, with 15 rats in each group. Additionally, 10 rats were assigned to a blank group and administrated with an equivalent volume of normal saline by gavage. After four weeks of continuous drug administration, the gastric mucosal tissue was collected. Hematoxylin-eosin(HE) staining was performed to reveal the pathological changes in the gastric mucosa. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) was employed to detect apoptosis in gastric mucosal epithelial cells. RT-PCR was adopted to determine the mRNA levels of miRNA-21, phosphatase and tensin homolog(PTEN), Bcl-2, Bcl-2-associated X protein(Bax), and cysteinyl aspartate-specific protease 3(caspase-3). Western blot was employed to determine the protein levels of PTEN, Bcl-2, Bax, and caspase-3. Immunohistochemistry(IHC) was used to detect the positive expression of PTEN, Bcl-2, and Bax in the gastric mucosal tissue. Transmission electron microscopy(TEM) was employed to observe the morphological and structural changes in mitochondria. The results showed that compared with model group, the drug administration groups showed alleviated pathological changes, with increased apoptotic cells, down-regulated mRNA levels of miRNA-21 and Bcl-2, up-regulated mRNA and protein levels of PTEN, Bax, and caspase-3, and down-regulated protein level of Bcl-2. In addition, the drug administration groups exhibited mitochondrial swelling and rupture and reduction of cristae, which indicated mitochondrial apoptosis. These findings suggest that Zhiwei Fuwei Pills can effectively improve mitochondrial apoptosis in PLGC cells by regulating the miRNA-21/Bcl-2 signaling pathway.
Animals
;
MicroRNAs/metabolism*
;
Male
;
Apoptosis/drug effects*
;
Stomach Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitochondria/genetics*
;
Signal Transduction/drug effects*
;
Precancerous Conditions/drug therapy*
;
Humans
;
PTEN Phosphohydrolase/genetics*
5.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
6.Evaluation of anorectal dynamics in children with tethered cord syndrome before and after surgery and its clinical significance.
Qian-Cheng XU ; Zhi-Peng SHEN ; Pei-Liang ZHANG ; Jing-Yi FENG ; Mi-Zu JIANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):563-567
OBJECTIVES:
To investigate the characteristics and clinical significance of anorectal manometry measurements in children with tethered cord syndrome (TCS) before and after surgery.
METHODS:
A retrospective study was conducted on 44 children with TCS treated at the Children's Hospital of Zhejiang University School of Medicine from January 2022 to September 2023. These patients were divided into effective subgroup (n=34) and non-effective subgroup (n=10) based on postoperative symptom improvement. Additionally, 34 children with functional constipation were selected as a control group. Baseline data and manometry measurements were compared between the preoperative TCS group and the control group, as well as between the non-effective and effective subgroups.
RESULTS:
The TCS group had lower short contraction time and defecation relaxation rate compared to the control group (P<0.05), while defecation residual pressure and maximum rectal tolerable threshold were higher than the control group (P<0.05). The length of the anal canal in the high-pressure zone in the effective subgroup was greater postoperatively than preoperatively (P<0.05), and the initial rectal sensation threshold decreased postoperatively (P<0.05). The non-effective subgroup had lower preoperative maximum rectal expulsion pressure compared to the effective subgroup (P<0.05). Postoperative rectal anal inhibition reflex values in the effective subgroup were higher than those in the non-effective subgroup (P<0.05).
CONCLUSIONS
There are some differences in anorectal dynamics between children with TCS and those with functional constipation. Maximum rectal expulsion pressure may be a key predictor of surgical outcomes. Surgery can alter certain defecation functions in some children.
Humans
;
Male
;
Anal Canal/physiopathology*
;
Female
;
Rectum/physiopathology*
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Manometry
;
Neural Tube Defects/physiopathology*
;
Infant
;
Defecation
;
Adolescent
;
Constipation/physiopathology*
;
Clinical Relevance
7.Correlation between pathological features at the positive margin and biochemical recurrence after radical prostatectomy in patients with organ-confined prostate cancer.
Xin-Huan FAN ; Yan ZHANG ; Lin-Lin ZHU ; Cheng-Yi LIU ; De-Gang CHEN ; Shi-Fang SANG ; Peng-Cheng XU
National Journal of Andrology 2025;31(3):202-207
Objective: To investigate the correlation between pathological features at the positive margins and biochemical recurrence after radical prostatectomy for prostate cancer. Methods: From June 2014 to December 2019, a total of 200 patients with organ-confined prostate cancer who underwent radical prostatectomy were included in this study by the method of case matching (1∶1). One hundred patients with positive surgical margin and 100 with negative surgical margin were enrolled in this study. All patients did not receive any adjuvant treatment after surgery with a clinical stage of T2/N0. BCR-free survival was estimated using the Kaplan-Meier method. An optimal cutoff for the PSM length which differentiated risk for BCR was identified by Classification and Regression Tree analysis (CART). Cox proportional hazards regression model was used to assess the association between variables and BCR-free survival. Results: A total of 200 patients were included in this study, and 177 patients with pT2 stage were pathological after operation. The median follow-up time of this group of patients was 32.8 months ranged from 5.6 to 80.5 months. A total of 28 cases of biochemical recurrence were found through PSA follow-up after surgery, including 6 cases (6.0%) in the negative margin group and 22 cases (22.0%) in the positive margin group. The result of Kaplan Meier survival curve analysis showed that the non biochemical recurrence survival time of the negative margin group was longer than that of the positive margin group (log rank χ2=9.336, P=0.003). It was found that the length of positive margin ≥1 mm in the positive margin group was positively correlated with postoperative biochemical recurrence. Multivariate Cox proportional hazards regression was used to identify that the highest Gleason score ≥8 and the length of positive ≥1 mm were independent factors of postoperative biochemical recurrence in both the overall patients and the patients with positive margin. Conclusion: The patients with highest Gleason score ≥8 and the length of positive ≥1mm are at elevated risk for BCR.
Humans
;
Male
;
Prostatectomy
;
Prostatic Neoplasms/pathology*
;
Neoplasm Recurrence, Local
;
Margins of Excision
;
Prostate-Specific Antigen/blood*
;
Proportional Hazards Models
;
Middle Aged
;
Aged
;
Neoplasm Staging
;
Kaplan-Meier Estimate
8.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
9.Exploration of dry eye treatment plan for high-altitude military personnel
Peng-Cheng ZHANG ; Jing-Yi ZHU ; Han-Jing DAI ; Li-Bin CHEN ; Yu-Meng BAO ; Bo ZENG
Medical Journal of Chinese People's Liberation Army 2024;49(7):733-738
Objective To explore the efficacy and safety of modified meibomian gland massage combined with ultrasonic atomization and drug therapy for dry eye in high-altitude military personnel.Methods A total of 180 patients(360 eyes)with dry eye who were diagnosed and treated by the medical team of General Hospital of Central Theater Command of Chinese PLA from July to October 2022 in Linzhi,Tibet(average altitude of 3100 meters)were selected as the research subjects.Patients were divided into four block groups based on the course of the disease:<1 month,1-3 months,3-6 months,and≥6 months,and each block group was randomly assigned to control group,traditional group and modified group by random number table method,with 60 cases in each group.Control group received routine treatment(artificial tear drops and atomization fumigation);on the basis of routine treatment,traditional group underwent traditional meibomian gland massage,and modified group underwent modified meibomian gland massage.After 3 months of treatment,the scores of symptoms and signs,total effective rate,duration of treatment and incidence of adverse events were compared among the 3 groups.Results In the intra-group comparison before and after treatment,except for control group's symptom scores difference which was not statistically significant(P>0.05),all other scores decreased significantly(P<0.05).In the inter-group comparison after treatment,the scores of both traditional group and modified group were significantly better than those of control group(P<0.05),but no significant difference was observed in symptom and sign scores between traditional and modified groups(P>0.05).Compared with control group,the total effective rates of traditional group and modified group both significantly increased(P<0.01),but there was no significant difference in total effective rate between traditional and modified groups(P>0.05).The treatment time in modified group was significantly longer than that in control group(P<0.05),but significantly shorter than that in traditional group(P<0.05).The incidence of adverse events was significantly lower in modified group than that in traditional group(P<0.001).Conclusion In high-altitude areas,modified meibomian gland massage combined with ultrasonic atomization and local drug therapy for dry eye is safe and effective,non-invasiveness and easy to perform,and suitable for promoting and application in military field training.
10.The effect of NLRP3 on airway epithelial-mesenchymal transition by regulating Th17/Treg imbalance in asthmatic mice
Beibei CHENG ; Guoran PENG ; Lingling ZHOU ; Feiying WANG ; Silin XIE ; Jian YI ; Aiguo DAI
Immunological Journal 2024;40(5):440-445
This study was designed to explore the correlation between alterations in NLRP3 levels and Th17/Treg imbalance in asthmatic mice undergoing epithelial-mesenchymal transition(EMT).A murine model of asthma was established by intraperitoneal injection combined with nebulization of ovalbumin(OVA).Mice were randomly grouped into asthma model group and normal control group.The airway reactivity was detected with non-invasive lung function instrument.Hematoxylin and Eosin(HE)and Masson's trichrome staining were applied to evaluate the histopathological injury of lung tissue and the extent of lung fibrosis;RT-qPCR was applied to detect EMT-related biomarkers(Snail,E-Cadherin,N-Cadherin),the specific transcription factors of T cell subsets(RoRγt,Foxp3)and NLRP3 in lung tissue of mice;Western blot was used to detect the protein expression of E-cadherin,N-Cadherin and NLRP3 in lung tissue of mice.The Th17 and Treg cell populations in the spleen were enumerated via flow cytometry.Furthermore,the expression levels of NLRP3,IL-17 and IL-10 in bronchoalveolar lavage fluid(BALF)were analyzed by Giemsa staining.Compared with the control group,the asthma model group showed higher level of airway resistance,coupled with an obviously decrease in pulmonary ventilation compliance.Pathological alterations in lung tissue were evident,characterized by thickening of the airway epithelium,airway stenosis,infiltration of inflammatory cells,higher expression levels of N-Cadherin and NLRP3 proteins(P<0.05),lower expression level of E-Cadherin(P<0.001)and higher levels of marker genes(Snail and N-Cadherin)in lung tissue.Furthermore,model mice demonstrated higher level of NLRP3 in BALF(P<0.05),higher level of Th17 in spleen,and higher levels of retinoic acid orphan receptor(ROR)-γt mRNA(P<0.05)and Th17-related cytokines(IL-17)(P<0.01).Concurrently,model mice also showed an obviously decrease in the prevalence of Treg cells,Forkhead box Foxp3 mRNA(P<0.001),and Treg-related cytokine IL-10(P<0.05).The results of the Pearson correlation analysis indicated that the level of NLRP3 mRNA was positively correlated the ratio of RoR γt mRNA,but negatively correlated with Foxp3 mRNA in the lung tissue of asthmatic mice.Additionally,NLRP3 in BALF demonstrated a positive correlation with IL-17 and a negative correlation with IL-10.In conclusion,These findings suggest that NLRP3 may trigger bronchial EMT by exacerbating the immune imbalance of Th17/Treg cells.

Result Analysis
Print
Save
E-mail