1.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
2.Study of The Y-STR Multiplex Microfluidic Chip Rapid Amplification System
Dao-Yu WANG ; Qun WAN ; Bin ZHUANG ; Li-Jian ZHAO ; Jun-Ping HAN ; Cai-Xia LI
Progress in Biochemistry and Biophysics 2024;51(3):696-705
ObjectiveAt present, the matching reagents of commercially available rapid DNA instruments based on microfluidics chip technology are autosome short tandem repeat (STR) individual identification reagents. The non-recombining part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profile is uninformative. Y-STR loci are useful markers to identify males and male lineages in forensic practice. In order to achieve rapid and fully integrated detection ofY-STR loci, this study constructed the RTyper Y27 microfluidic chip rapid detection system and validated the performance of this system. MethodsThe system was verified and evaluated by sensitivity, success rate, typing accuracy, peak height balance, sizing precision and accuracy, mock case sample tests, mixture detection ability, and inhibition tolerance. ResultsComplete Y-STR profiles can be obtained when the template amount of DNA standard 9948 was ≥8 ng, the number of blood cards was ≥3 pieces, and the number of oral swab scrapings was≥7 times. The success rate of fully integrated detection was 91.52%, and the concordance rates was 99.74% for 165 testing samples. The success rate of 115 blood spots in these samples was 90.43%, with a typing accuracy of 99.65%, the success rate of 50 buccal swabs was 94%, with a typing accuracy of 99.92%. There was no significant difference in typing accuracy between blood spots and buccal swab samples. The peak height ratio between different fluorescence channels was 89.81%. The standard deviation of allelic ladder for 10 runs was within 0.5 bp. The size differences between allele and corresponding allele in allelic ladder was within 0.5 bp. The maximum precision CV values within and between batches were 0.48% and 0.68%, respectively, which were lower than 15%. These data indicate that the system has good accuracy and precision. The system was capable of accurately typing oral swabs, blood cards, saliva cards, cigarette butts, blood swabs and seminal stains. Complete Y-STR profiles can be obtained and distinguish at the 1∶3 ratio of minor and major contributors in artificial male DNA mixtures. Complete Y-STR genotyping can be obtained under the interference of inhibitors, such as different concentrations of humic acid (50-400 mg/L), indigotin (20-100 nmol/L) and hemoglobin (100-500 μmol/L). ConclusionIn this study, the RTyper Y27 microfluidic chip rapid amplification system is combined with the Quick TargSeq 1.0 integrated system, and the Y-STR profile can be obtained in approximately 2 h. Through a series of verification experiments, the results show that the system has good repeatability, accuracy and stability, can meet the on-site Y-STR detection requirements, and can be used in forensic practice.
3.A Survey on the Mental Health Status of Social Workers Under Long-term Stress of COVID-19 and the Exploration of Associated Factors: A Case Study of Chaoyang District, Beijing
Han ZHANG ; Yuan GAO ; Wanxin MA ; Hongxin LIU ; Fanrui MENG ; Danping ZHANG ; Chunyu LIU ; Lu LIU ; Ying XING
Medical Journal of Peking Union Medical College Hospital 2024;15(4):845-854
To study the prevalence of depression, anxiety, and insomnia among social workers during the prolonged battle against the COVID-19 pandemic and explore the associated risk factors. Using a stratified cluster sampling method, we selected all social workers in the five streets of Chaoyang District, Beijing(Jiuxianqiao, Wangjing, Taiyanggong, Shibalidian, Sunhe) from November 2021 to March 2022 as the study population(social worker group), and the frontline medical staffs(medical professional group) of the same age range of the corresponding community hospitals of the same five streets, and the community residents(resident group) as the control population. The ratio of the social worker group, medical professional group, and resident group was 1∶1∶1. The Sojump platform was used to send electronic questionnaires to the wechat groups of social workers, healthcare workers, and community residents to carry out the survey. The screen positive rates for anxiety, depression, and sleep disorders were compared among the 3 groups. Multifactorial Logistic regression and decision tree were used to analyze the influencing factors of anxiety, depression, and sleep disorders among social workers. A total of 954 questionnaires were collected, of which 62 were disqualified and excluded. Finally, 892 valid questionnaires(93.5%) were included for data analysis. Among them, there were 372 questionnaires(41.7%) from the social worker group, 262(29.4%) from the medical professional group, and 258(28.9%) from the resident group. The prevalences of anxiety, depression, and sleep disorders among social workers group were found to be 15.3%, 22.0%, and 48.1%, respectively, which were significantly higher than those in the medical professional group(7.6%, 10.3%, and 30.5%) and the resident group(7.0%, 8.5%, and 29.5%), all Social workers exhibited significant levels of anxiety, depression, and sleep disorders during the long-term pandemic prevention, with CPSS being the most significant influencing factor.
4.Explore the influence of different factors on the relevant information of basal lung resection under thoracoscopic surgery
Fei QI ; Hongxiang FENG ; Yu HAN ; Fei XIAO ; Yuhui SHI ; Chaoyang LIANG ; Deruo LIU ; Zhenrong ZHANG
Chinese Journal of Thoracic and Cardiovascular Surgery 2024;40(7):392-398
Objective:To explore the influence of pulmonary nodule size, nodule location, fissure, surgical approach, surgical entrance, postoperative pathology, surgical method and other factors on the relevant information of basal segmentectomy under thoracoscopy.Methods:Retrospectively analyze 103 patients who underwent thoracoscopic basal segmentectomy of the lung from January 2023 to February 2024. According to the classification of nodule size, nodule position, development of pulmonary fissure, surgical approach, number of surgical entrance, postoperative pathology, surgical method, tc., the influence of single factor Logistic regression analysis was used to explore the influence of various factors on the relevant information of pulmonary basal segmentectomy under thoracoscopy. Results:When the dependent variable was the surgery duration, single factor analysis showed that CT location( P=0.024), nodule composition( P=0.029), surgical entry( P=0.002), surgical method( P<0.001), and surgical approach( P=0.052) significantly influenced the surgery duration. Variables with P<0.1 in the single factor analysis were included in the multivariate analysis, which showed that surgical entry and surgical method significantly influenced surgery duration( P<0.05). When the dependent variable was the total hospitalization cost, single factor analysis showed that CT location, surgical approach, and surgical method significantly influenced the total hospitalization cost( P<0.1). Multiple factor analysis showed that the surgical method affected the total hospitalization cost, with significantly higher costs when S9 or S10 lung segments were resected( P=0.050). When the dependent variable was postoperative drainage duration, single factor analysis showed that the condition of the lung fissures significantly influenced postoperative drainage duration( P=0.028). Multiple factor regression analysis showed that incomplete lung fissure development significantly increased the possibility of postoperative air leaks( P=0.034). Conclusion:The surgical access may significantly affect the operation time, which is the use of uniport thoracoscopy is shorter than the multi-port operation time, the surgical method does not contain S9/S10 is shorter than that of S9/S10, and the total cost of hospitalization is lower. The completeness of the fissure will significantly decrease the possibility of postoperative pulmonary leakage.
5.Biomechanical Analysis of Hybrid Artificial Discs or Zero-Profile Devices for Treating 1-Level Adjacent Segment Degeneration in ACDF Revision Surgery
Weishi LIANG ; Yihan YANG ; Bo HAN ; Duan SUN ; Peng YIN ; Yong HAI
Neurospine 2024;21(2):606-619
Objective:
Cervical hybrid surgery optimizes the use of cervical disc arthroplasty (CDA) and zero-profile (ZOP) devices in anterior cervical discectomy and fusion (ACDF) but lacks uniform combination and biomechanical standards, especially in revision surgery (RS). This study aimed to investigate the biomechanical characteristics of adjacent segments of the different hybrid RS constructs in ACDF RS.
Methods:
An intact 3-dimensional finite element model generated a normal cervical spine (C2–T1). This model was modified to the primary C5–6 ACDF model. Three RS models were created to treat C4–5 adjacent segment degeneration through implanting cages plus plates (Cage-Cage), ZOP devices (ZOP-Cage), or Bryan discs (CDA-Cage). A 1.0-Nm moment was applied to the primary C5–6 ACDF model to generate total C2–T1 range of motions (ROMs). Subsequently, a displacement load was applied to all RS models to match the total C2–T1 ROMs of the primary ACDF model.
Results:
The ZOP-Cage model showed lower biomechanical responses including ROM, intradiscal pressure, maximum von Mises stress in discs, and facet joint force in adjacent segments compared to the Cage-Cage model. The CDA-Cage model exhibited the lowest biomechanical responses and ROM ratio at adjacent segments among all RS models, closely approached or lower than those in the primary ACDF model in most motion directions. Additionally, the maximum von Mises stress on the C3–4 and C6–7 discs increased in the Cage-Cage and ZOP-Cage models but decreased in the CDA-Cage model when compared to the primary ACDF model.
Conclusion
The CDA-Cage construct had the lowest biomechanical responses with minimal kinematic change of adjacent segments. ZOP-Cage is the next best choice, especially if CDA is not suitable. This study provides a biomechanical reference for clinical hybrid RS decision-making to reduce the risk of ASD recurrence.
6.Biomechanical Analysis of Hybrid Artificial Discs or Zero-Profile Devices for Treating 1-Level Adjacent Segment Degeneration in ACDF Revision Surgery
Weishi LIANG ; Yihan YANG ; Bo HAN ; Duan SUN ; Peng YIN ; Yong HAI
Neurospine 2024;21(2):606-619
Objective:
Cervical hybrid surgery optimizes the use of cervical disc arthroplasty (CDA) and zero-profile (ZOP) devices in anterior cervical discectomy and fusion (ACDF) but lacks uniform combination and biomechanical standards, especially in revision surgery (RS). This study aimed to investigate the biomechanical characteristics of adjacent segments of the different hybrid RS constructs in ACDF RS.
Methods:
An intact 3-dimensional finite element model generated a normal cervical spine (C2–T1). This model was modified to the primary C5–6 ACDF model. Three RS models were created to treat C4–5 adjacent segment degeneration through implanting cages plus plates (Cage-Cage), ZOP devices (ZOP-Cage), or Bryan discs (CDA-Cage). A 1.0-Nm moment was applied to the primary C5–6 ACDF model to generate total C2–T1 range of motions (ROMs). Subsequently, a displacement load was applied to all RS models to match the total C2–T1 ROMs of the primary ACDF model.
Results:
The ZOP-Cage model showed lower biomechanical responses including ROM, intradiscal pressure, maximum von Mises stress in discs, and facet joint force in adjacent segments compared to the Cage-Cage model. The CDA-Cage model exhibited the lowest biomechanical responses and ROM ratio at adjacent segments among all RS models, closely approached or lower than those in the primary ACDF model in most motion directions. Additionally, the maximum von Mises stress on the C3–4 and C6–7 discs increased in the Cage-Cage and ZOP-Cage models but decreased in the CDA-Cage model when compared to the primary ACDF model.
Conclusion
The CDA-Cage construct had the lowest biomechanical responses with minimal kinematic change of adjacent segments. ZOP-Cage is the next best choice, especially if CDA is not suitable. This study provides a biomechanical reference for clinical hybrid RS decision-making to reduce the risk of ASD recurrence.
7.Biomechanical Analysis of Hybrid Artificial Discs or Zero-Profile Devices for Treating 1-Level Adjacent Segment Degeneration in ACDF Revision Surgery
Weishi LIANG ; Yihan YANG ; Bo HAN ; Duan SUN ; Peng YIN ; Yong HAI
Neurospine 2024;21(2):606-619
Objective:
Cervical hybrid surgery optimizes the use of cervical disc arthroplasty (CDA) and zero-profile (ZOP) devices in anterior cervical discectomy and fusion (ACDF) but lacks uniform combination and biomechanical standards, especially in revision surgery (RS). This study aimed to investigate the biomechanical characteristics of adjacent segments of the different hybrid RS constructs in ACDF RS.
Methods:
An intact 3-dimensional finite element model generated a normal cervical spine (C2–T1). This model was modified to the primary C5–6 ACDF model. Three RS models were created to treat C4–5 adjacent segment degeneration through implanting cages plus plates (Cage-Cage), ZOP devices (ZOP-Cage), or Bryan discs (CDA-Cage). A 1.0-Nm moment was applied to the primary C5–6 ACDF model to generate total C2–T1 range of motions (ROMs). Subsequently, a displacement load was applied to all RS models to match the total C2–T1 ROMs of the primary ACDF model.
Results:
The ZOP-Cage model showed lower biomechanical responses including ROM, intradiscal pressure, maximum von Mises stress in discs, and facet joint force in adjacent segments compared to the Cage-Cage model. The CDA-Cage model exhibited the lowest biomechanical responses and ROM ratio at adjacent segments among all RS models, closely approached or lower than those in the primary ACDF model in most motion directions. Additionally, the maximum von Mises stress on the C3–4 and C6–7 discs increased in the Cage-Cage and ZOP-Cage models but decreased in the CDA-Cage model when compared to the primary ACDF model.
Conclusion
The CDA-Cage construct had the lowest biomechanical responses with minimal kinematic change of adjacent segments. ZOP-Cage is the next best choice, especially if CDA is not suitable. This study provides a biomechanical reference for clinical hybrid RS decision-making to reduce the risk of ASD recurrence.
8.Biomechanical Analysis of Hybrid Artificial Discs or Zero-Profile Devices for Treating 1-Level Adjacent Segment Degeneration in ACDF Revision Surgery
Weishi LIANG ; Yihan YANG ; Bo HAN ; Duan SUN ; Peng YIN ; Yong HAI
Neurospine 2024;21(2):606-619
Objective:
Cervical hybrid surgery optimizes the use of cervical disc arthroplasty (CDA) and zero-profile (ZOP) devices in anterior cervical discectomy and fusion (ACDF) but lacks uniform combination and biomechanical standards, especially in revision surgery (RS). This study aimed to investigate the biomechanical characteristics of adjacent segments of the different hybrid RS constructs in ACDF RS.
Methods:
An intact 3-dimensional finite element model generated a normal cervical spine (C2–T1). This model was modified to the primary C5–6 ACDF model. Three RS models were created to treat C4–5 adjacent segment degeneration through implanting cages plus plates (Cage-Cage), ZOP devices (ZOP-Cage), or Bryan discs (CDA-Cage). A 1.0-Nm moment was applied to the primary C5–6 ACDF model to generate total C2–T1 range of motions (ROMs). Subsequently, a displacement load was applied to all RS models to match the total C2–T1 ROMs of the primary ACDF model.
Results:
The ZOP-Cage model showed lower biomechanical responses including ROM, intradiscal pressure, maximum von Mises stress in discs, and facet joint force in adjacent segments compared to the Cage-Cage model. The CDA-Cage model exhibited the lowest biomechanical responses and ROM ratio at adjacent segments among all RS models, closely approached or lower than those in the primary ACDF model in most motion directions. Additionally, the maximum von Mises stress on the C3–4 and C6–7 discs increased in the Cage-Cage and ZOP-Cage models but decreased in the CDA-Cage model when compared to the primary ACDF model.
Conclusion
The CDA-Cage construct had the lowest biomechanical responses with minimal kinematic change of adjacent segments. ZOP-Cage is the next best choice, especially if CDA is not suitable. This study provides a biomechanical reference for clinical hybrid RS decision-making to reduce the risk of ASD recurrence.
9.Biomechanical Analysis of Hybrid Artificial Discs or Zero-Profile Devices for Treating 1-Level Adjacent Segment Degeneration in ACDF Revision Surgery
Weishi LIANG ; Yihan YANG ; Bo HAN ; Duan SUN ; Peng YIN ; Yong HAI
Neurospine 2024;21(2):606-619
Objective:
Cervical hybrid surgery optimizes the use of cervical disc arthroplasty (CDA) and zero-profile (ZOP) devices in anterior cervical discectomy and fusion (ACDF) but lacks uniform combination and biomechanical standards, especially in revision surgery (RS). This study aimed to investigate the biomechanical characteristics of adjacent segments of the different hybrid RS constructs in ACDF RS.
Methods:
An intact 3-dimensional finite element model generated a normal cervical spine (C2–T1). This model was modified to the primary C5–6 ACDF model. Three RS models were created to treat C4–5 adjacent segment degeneration through implanting cages plus plates (Cage-Cage), ZOP devices (ZOP-Cage), or Bryan discs (CDA-Cage). A 1.0-Nm moment was applied to the primary C5–6 ACDF model to generate total C2–T1 range of motions (ROMs). Subsequently, a displacement load was applied to all RS models to match the total C2–T1 ROMs of the primary ACDF model.
Results:
The ZOP-Cage model showed lower biomechanical responses including ROM, intradiscal pressure, maximum von Mises stress in discs, and facet joint force in adjacent segments compared to the Cage-Cage model. The CDA-Cage model exhibited the lowest biomechanical responses and ROM ratio at adjacent segments among all RS models, closely approached or lower than those in the primary ACDF model in most motion directions. Additionally, the maximum von Mises stress on the C3–4 and C6–7 discs increased in the Cage-Cage and ZOP-Cage models but decreased in the CDA-Cage model when compared to the primary ACDF model.
Conclusion
The CDA-Cage construct had the lowest biomechanical responses with minimal kinematic change of adjacent segments. ZOP-Cage is the next best choice, especially if CDA is not suitable. This study provides a biomechanical reference for clinical hybrid RS decision-making to reduce the risk of ASD recurrence.
10.A preliminary prediction model of depression based on whole blood cell count by machine learning method.
Jing YAN ; Xin Yuan LI ; Yu Lan GENG ; Yu Fang LIANG ; Chao CHEN ; Ze Wen HAN ; Rui ZHOU
Chinese Journal of Preventive Medicine 2023;57(11):1862-1868
This study used machine learning techniques combined with routine blood cell analysis parameters to build preliminary prediction models, helping differentiate patients with depression from healthy controls, or patients with anxiety. A multicenter study was performed by collecting blood cell analysis data of Beijing Chaoyang Hospital and the First Hospital of Hebei Medical University from 2020 to 2021. Machine learning techniques, including support vector machine, decision tree, naïve Bayes, random forest and multi-layer perceptron were explored to establish a prediction model of depression. The results showed that based on the blood cell analysis results of healthy controls and depression group, the accuracy of prediction model reached as high as 0.99, F1 was 0.975. Receiver operating characteristic curve area and average accuracy were 0.985 and 0.967, respectively. Platelet parameters contributed mostly to depression prediction model. While, to random forest differential diagnosis model based on the data from depression and anxiety groups, prediction accuracy reached 0.68 and AUC 0.622. Age, platelet parameters, and average volume of red blood cells contributed the most to the model. In conclusion, the study researched on the prediction model of depression by exploring blood cell analysis parameters, revealing that machine learning models were more objective in the evaluation of mental illness.
Humans
;
Depression
;
Bayes Theorem
;
Machine Learning
;
Support Vector Machine
;
Blood Cell Count

Result Analysis
Print
Save
E-mail