1.Preparation of polyphenol-mediated copper ion coating on titanium surface and antibacterial and antioxidant properties
Zhenju GUAN ; Yonglin XIE ; Shougang XIANG ; Chengdong ZHANG ; Xiaolong LI ; Xingping LI ; Chao PU ; Bo ZHANG ; Xuwei LUO ; Dongqin XIAO
Chinese Journal of Tissue Engineering Research 2025;29(10):1997-2005
BACKGROUND:Titanium implants are widely used in clinical practice because of their high strength and good biocompatibility.However,during implantation,bacterial infection and tissue damage environment produce a large number of reactive oxygen species,which can easily lead to delayed tissue healing and surgical failure.Consequently,the development of titanium implants with antimicrobial and antioxidant properties becomes paramount. OBJECTIVE:Considering the potent antimicrobial attributes of copper ions and the remarkable antioxidant qualities of polyphenols,we proposed the fabrication of polyphenol-mediated copper ion coatings on titanium surfaces.These coatings were subsequently assessed for their in vitro antimicrobial and antioxidant properties. METHODS:Nanostructures were generated on the titanium surface using the alkali thermal method.The titanium was immersed in a solution containing tannic acid and copper ions to achieve polyphenol-mediated copper ion coatings.The surface morphology and water contact angle were detected.The loading and release of copper ions were examined using atomic absorption spectroscopy.Staphylococcus aureus was inoculated on the surface of pure titanium sheet(blank group),alkali heat treated titanium sheet(control group),and polyphenol mediated copper ion modified titanium sheet(experimental group)to observe the bacterial survival status.Osteoblast precursor cells MC3T3-E1 were co-cultivated on the surface of three groups of titanium sheets to assess their antioxidant properties and bioactivity. RESULTS AND CONCLUSION:(1)Scanning electron microscopy showed that the polyphenol-mediated copper ion modified titanium sheet had rod-like nanostructures and no cracks on the surface.The surface hydrophilicity of copper ion modified titanium sheet mediated by polyphenol was close to that of pure titanium sheet.Atomic absorption spectrometry results showed a 51%increase in the loading capacity of copper ions after polyphenol mediation,with a uniform release of copper ions.(2)The antibacterial rates of titanium sheets in the blank group,control group,and experimental group were 0%,21.65%,and 93.75%,respectively.The live/dead staining and CTC staining showed that the live bacteria on the surface of titanium plates in the blank group were the most,and the live bacteria on the surface of titanium plates in the experimental group were the least.(3)The results of live/dead staining and CCK-8 assay showed that the three groups of titanium sheets had good cytocompatibility,and the titanium sheets in the experimental group were more conducive to the proliferation of MC3T3-E1 cells.Active oxygen fluorescence probe detection exhibited that compared with the other two groups,the fluorescence intensity of active oxygen on the surface of the experimental group was significantly reduced.The results of alkaline phosphatase and alizarin red S staining showed that the osteogenic differentiation and extracellular matrix mineralization of MC3T3-E1 cells on the surface of titanium sheets in the experimental group were stronger than those in the other two groups.(4)These results show that the polyphenol-mediated copper ion coating has strong antibacterial and antioxidant properties and promotes osteogenic differentiation.
2.Machine learning identification of LRRC15 and MICB as immunodiagnostic markers for rheumatoid arthritis
Yanhu TIAN ; Xinan HUANG ; Tongtong GUO ; Rusitanmu·Ahetanmu ; Jiangmiao LUO ; Yao XIAO ; Chao WANG ; Weishan WANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2411-2420
BACKGROUND:Rheumatoid arthritis is a chronic autoimmune disease.Early diagnosis is crucial for preventing disease progression and for effective treatment.Therefore,it is of significance to investigate the diagnostic characteristics and immune cell infiltration of rheumatoid arthritis. OBJECTIVE:Based on the Gene Expression Omnibus(GEO)database,to screen potential diagnostic markers of rheumatoid arthritis using machine learning algorithms and to investigate the relationship between the diagnostic characteristics of rheumatoid arthritis and immune cell infiltration in this pathology. METHODS:The gene expression datasets of synovial tissues related to rheumatoid arthritis were obtained from the GEO database.The data sets were merged using a batch effect removal method.Differential expression analysis and functional correlation analysis of genes were performed using R software.Bioinformatics analysis and three machine learning algorithms were used for the extraction of disease signature genes,and key genes related to rheumatoid arthritis were screened.Furthermore,we analyzed immune cell infiltration on all differentially expressed genes to examine the inflammatory state of rheumatoid arthritis and investigate the correlation between their diagnostic characteristics and infiltrating immune cells. RESULTS AND CONCLUSION:In both rheumatoid arthritis and normal synovial tissues,we identified 179 differentially expressed genes,with 124 genes up-regulated and 55 genes down-regulated.Enrichment analysis revealed a significant correlation between rheumatoid arthritis and immune response.Three machine learning algorithms identified LRRC15 and MICB as potential biomarkers of rheumatoid arthritis.LRRC15(area under the curve=0.964,95%confidence interval:0.924-0.992)and MICB(area under the curve=0.961,95%confidence interval:0.923-0.990)demonstrated strong diagnostic performance on the validation dataset.The infiltration of 13 types of immune cells was altered,with macrophages being the most affected.In rheumatoid arthritis,the majority of proinflammatory pathways in immune cell function were activated.Immunocorrelation analysis revealed that LRRC15 and MICB had the strongest correlation with M1 macrophages.To conclude,this study identified LRRC15 and MICB as potential diagnostic markers for rheumatoid arthritis,with strong diagnostic performance and significant correlation with immune cell infiltration.Machine learning and bioinformatics analysis deepened the understanding of immune infiltration in rheumatoid arthritis and provided new ideas for the diagnosis and treatment of rheumatoid arthritis.
3.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
4.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
5.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
6.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
7.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
8.Analysis of the effect of dosimeter wearing position on effective dose estimation among interventional radiology workers
Xuanrong ZHANG ; Wen GUO ; Xian XUE ; Pin GAO ; Kaiyi WANG ; Xuan ZHANG ; Yanqiu DING ; Xiao LUO ; Wenfang MENG ; Jun CHAO
Chinese Journal of Radiological Health 2025;34(5):687-694
Objective To evaluate the influence of the wearing position of dosimeters outside lead aprons on effective dose estimation for interventional radiology workers, analyze the differences between single and double dosimeter methods in effective dose estimation, and provide a reference for the personal dose monitoring of interventional radiology workers. Methods This study employed a combined approach of on-site monitoring and Monte Carlo simulation to evaluate the impact of the wearing position of dosimeters outside lead aprons on effective dose estimation, as well as the differences between effective doses measured using single and double dosimeters. Interventional radiology workers wore dosimeters at three positions: the neck outside the lead collar, the left chest outside the lead apron, and inside the lead apron. Effective doses were estimated using the single and double dosimeter methods specified in GBZ 128-2019 Specifications for individual monitoring of occupational external exposure, and the impact of different wearing positions on the estimation results was compared. Geant4 Monte Carlo simulations were used to model dose distributions at the neck outside the lead collar and at the left chest outside the lead apron for operators performing cardiovascular interventions under tube voltages of 70, 80, 90, and 100 kVp and exposure angles of posteroanterior (PA), anteroposterior (AP), and left anterior oblique 45° (LAO45°) positions. The study assessed the impact of dosimeter wearing position on effective dose estimation. Results Monte Carlo simulations demonstrated that neck doses consistently exceeded left chest doses across different tube voltages and exposure angles, with neck-to-chest dose ratios of 0.80-0.90. Under identical tube voltage conditions, AP showed the highest doses, followed by LAO45°, and PA demonstrated the lowest doses. The single and double dosimeter methods exhibited consistent patterns in effective dose estimation. Single dosimeter method generally yielded higher effective doses with relative deviations of 9.9% to 83%, though these deviations decreased under high tube voltages. Field monitoring data indicated that most interventional radiology workers maintained relative deviations between single and double dosimeter calculations below 6%, with neck-to-chest dose ratios of 0.95-1.1. The estimation patterns remained consistent across both methods, though single dosimeter method showed slightly higher results. Conclusion Under PA, AP, or LAO45°, the doses at the neck consistently exceeded those at the left chest. Therefore, when wearing lead protective equipment, the dosimeter should be properly positioned at the neck outside the lead collar to accurately reflect the radiation doses of surgeons. Some interventional radiology workers improperly positioned the dosimeter (intended at the neck outside the lead collar) at the left chest outside the lead apron, and this may result in an underestimation of the effective dose.
9.Bidirectional relationship between type 2 diabetes mellitus and coronary artery disease: Prospective cohort study and genetic analyses
Wenqiang ZHANG ; Li ZHANG ; Chenghan XIAO ; Xueyao WU ; Huijie CUI ; Chao YANG ; Peijing YAN ; Mingshuang TANG ; Yutong WANG ; Lin CHEN ; Yunjie LIU ; Yanqiu ZOU ; Ling ZHANG ; Chunxia YANG ; Yuqin YAO ; Jiayuan LI ; Zhenmi LIU ; Xia JIANG ; Ben ZHANG
Chinese Medical Journal 2024;137(5):577-587
Background::While type 2 diabetes mellitus (T2DM) is considered a putative causal risk factor for coronary artery disease (CAD), the intrinsic link underlying T2DM and CAD is not fully understood. We aimed to highlight the importance of integrated care targeting both diseases by investigating the phenotypic and genetic relationships between T2DM and CAD.Methods::We evaluated phenotypic associations using data from the United Kingdom Biobank ( N = 472,050). We investigated genetic relationships by leveraging genomic data conducted in European ancestry for T2DM, with and without adjustment for body mass index (BMI) (T2DM: Ncase/ Ncontrol = 74,124/824,006; T2DM adjusted for BMI [T2DM adjBMI]: Ncase/ Ncontrol = 50,409/523,897) and for CAD ( Ncase/ Ncontrol = 181,522/984,168). We performed additional analyses using genomic data conducted in multiancestry individuals for T2DM ( Ncase/ Ncontrol = 180,834/1,159,055). Results::Observational analysis suggested a bidirectional relationship between T2DM and CAD (T2DM→CAD: hazard ratio [HR] = 2.12, 95% confidence interval [CI]: 2.01–2.24; CAD→T2DM: HR = 1.72, 95% CI: 1.63–1.81). A positive overall genetic correlation between T2DM and CAD was observed ( rg = 0.39, P = 1.43 × 10 -75), which was largely independent of BMI (T2DM adjBMI–CAD: rg = 0.31, P = 1.20 × 10 –36). This was corroborated by six local signals, among which 9p21.3 showed the strongest genetic correlation. Cross-trait meta-analysis replicated 101 previously reported loci and discovered six novel pleiotropic loci. Mendelian randomization analysis supported a bidirectional causal relationship (T2DM→CAD: odds ratio [OR] = 1.13, 95% CI: 1.11-1.16; CAD→T2DM: OR = 1.12, 95% CI: 1.07-1.18), which was confirmed in multiancestry individuals (T2DM→CAD: OR = 1.13, 95% CI: 1.10-1.16; CAD→T2DM: OR = 1.08, 95% CI: 1.04-1.13). This bidirectional relationship was significantly mediated by systolic blood pressure and intake of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, with mediation proportions of 54.1% (95% CI: 24.9-83.4%) and 90.4% (95% CI: 29.3-151.5%), respectively. Conclusion::Our observational and genetic analyses demonstrated an intrinsic bidirectional relationship between T2DM and CAD and clarified the biological mechanisms underlying this relationship.
10.Endovascular treatment for symptomatic non-acute long-segment occlusion of the internal carotid artery: comparison with drug therapy
Yue ZHU ; Chao HOU ; Shuxian HUO ; Qin YIN ; Xianjun HUANG ; Wen SUN ; Guodong XIAO ; Yong YANG ; Hongbing CHEN ; Min LI ; Mingyang DU ; Ruidong YE
International Journal of Cerebrovascular Diseases 2024;32(8):576-584
Objective:To investigate the clinical outcome of endovascular treatment vs. drug treatment in patients with symptomatic non-acute long-segment occlusion of the internal carotid artery. Methods:Based on prospective cohort registration research data, patients with symptomatic non-acute long-segment occlusion of internal carotid artery were retrospectively included. They were divided into a drug treatment group and an endovascular treatment group according to the actual treatment received. The latter was further divided into a successful recanalization group and an unsuccessful recanalization group. The endpoint events included ipsilateral ischemic stroke, any stroke, and all-cause death. Multivariate logistic regression analysis was used to compare the endpoint events between groups during the perioprocedural period (within 30 days), and multivariate Cox proportional hazards model was use to compare the endpoint events between the groups during the long-term follow-up. Results:A total of 684 patients were included, of which 570 (83.33%) were male, median aged 63 years (interquartile range, 56-70 years). Three hundred and fifty-three patients (51.6%) received drug treatment; 331 (48.4%) received endovascular treatment, of which 161 (48.6%) had successful recanalization. The median follow-up time was 1 223 days (interquartile range, 646.5-2 082 days), with 109 patients (15.9%) experiencing stroke recurrence events (including 87 ipsilateral ischemic stroke) and 78 (11.4%) experiencing all-cause mortality. The risk of any stroke during the perioprocedural period in the successful recanalization group was significantly higher than that in the drug treatment group (odds ratio 3.679, 95% confidence interval 1.038-13.036; P=0.044), but the risk of ipsilateral ischemic stroke recurrence (risk ratio 0.347, 95% confidence interval 0.152-0.791; P=0.012) and all-cause mortality (risk ratio 0.239, 95% confidence interval 0.093-0.618; P=0.003) during the long-term follow-up were significantly lower than those in the drug treatment group. Conclusions:In patients with symptomatic non-acute long-segment occlusion of the internal carotid artery, endovascular treatment can increase the risk of stroke recurrence within 30 days, but successful recanalization can reduce the risks of long-term ipsilateral ischemic stroke recurrence and all-cause mortality.

Result Analysis
Print
Save
E-mail