1.Extraction and identification of primary rat brain microvascular endothelial cells by improved tissue block culture method
Fan Zhang ; Bolin Li ; Ming Chi ; Haiqin Liu ; Yuanyu Tang
Acta Universitatis Medicinalis Anhui 2025;60(1):10-14
Objective :
To investigate the brain microvascular tissue block culture method for extracting primary rat brain microvascular endothelial cells and identify its effect.
Methods :
Brain tissue from 4-week-old Sprague Dawley rats was screened, pre-digested and solidified to obtain brain microvascular segments. These segments were subsequently placed in a CO2incubator for primary culture. The target cells were identified by cell morphology and immunocytochemical staining for factor Ⅷ-related antigen.
Results :
After a 48-hour culture periodin vitro, the short spindle cells crawled out from around the brain microvascular segments. After 72 hours, island-like cell culsters formed. After 96 hours the clusters fused and the cells formed a typical monolayer, cobble stone-like, and mosaic arrangement. Factor Ⅷ-related antigen immunocytochemical staining showed that the cytoplasm of the cells appeared brown-red, indicating positive expression; DAB stained the nucleus, showing blue-dark.
Conclusion
The brain microvascular tissue block culture method can isolate and culture primary rat brain microvascular endothelial cells.
2.Advances in research on biomaterials and stem cell/exosome-based strategies in the treatment of traumatic brain injury.
Wenya CHI ; Yingying HE ; Shuisheng CHEN ; Lingyi GUO ; Yan YUAN ; Rongjie LI ; Ruiyao LIU ; Dairan ZHOU ; Jianzhong DU ; Tao XU ; Yuan YU
Acta Pharmaceutica Sinica B 2025;15(7):3511-3544
Traumatic brain injury (TBI) is intricately linked to the most severe clinical manifestations of brain damage. It encompasses dynamic pathological mechanisms, including hemodynamic disorders, excitotoxic injury, oxidative stress, mitochondrial dysfunction, inflammation, and neuronal death. This review provides a comprehensive analysis and summary of biomaterial-based tissue engineering scaffolds and nano-drug delivery systems. As an example of functionalized biomaterials, nano-drug delivery systems alter the pharmacokinetic properties of drugs. They provide multiple targeting strategies relying on factors such as morphology and scale, magnetic fields, pH, photosensitivity, and enzymes to facilitate the transport of therapeutics across the blood-brain barrier and to promote selective accumulation at the injury site. Furthermore, therapeutic agents can be incorporated into bioscaffolds to interact with the biochemical and biophysical environment of the brain. Bioscaffolds can mimic the extracellular matrix environment, regulate cellular interactions, and increase the effectiveness of local treatments following surgical interventions. Additionally, stem cell-based and exosome-dominated extracellular vesicle carriers exhibit high bioreactivity and low immunogenicity and can be used to design therapeutic agents with high bioactivity. This review also examines the utilization of endogenous bioactive materials in the treatment of TBI.
3.Chemical knockdown of Keap1 and homoPROTAC-ing allergic rhinitis.
Jianyu YAN ; Tianyu WANG ; Ruizhi YU ; Lijuan XU ; Hongming SHAO ; Tengfei LI ; Zhe WANG ; Xudong CHA ; Zhenyuan MIAO ; Chengguo XING ; Ke XU ; Huanhai LIU ; Chunlin ZHUANG
Acta Pharmaceutica Sinica B 2025;15(8):4137-4155
Allergic rhinitis (AR), a globally prevalent immune-mediated inflammatory condition, is still an incurable disease. In the present study, we have validated the impact of the Kelch-like ECH associated protein 1 (Keap1)-related oxidative stress and inflammatory response in clinical AR patient peripheral blood and nasal swab samples, emphasizing the biological relevance of Keap1 and AR. Targeting Keap1 -nuclear factor erythroid 2-related factor 2 (Nrf2) related anti-oxidative stress may be effective for AR intervention. Drawing inspiration from the Keap1 homodimerization and the E3 ligase characteristics, we herein present a design of novel bivalent molecules for chemical knockdown of Keap1. For the first time, we characterized ternary complexes of Keap1 dimer and one molecule of bivalent compounds. The best bivalent molecule 8 encompasses robust capacity to degrade Keap1 as a homoPROTACKEAP1. It efficaciously suppresses inflammatory cytokines in extensively different cells, including human nasal epithelial cells. Moreover, in an AR mouse model, we confirmed that the chemical degradation induced by homoPROTACKEAP1 led to therapeutic benefits in managing AR symptoms, oxidative stress and inflammation. In summary, our findings underscore the efficacy of targeting the Keap1 system through the homoPROTAC-ing technology as an innovative and promising treatment strategy for the incurable allergic disorders.
4.Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway.
Wen-Yan ZHOU ; Jian-Kui DU ; Hong-Hong LIU ; Lei DENG ; Kai MA ; Jian XIAO ; Sheng ZHANG ; Chang-Nan WANG
Journal of Integrative Medicine 2025;23(5):560-575
OBJECTIVE:
Baicalein has been reported to have wide therapeutic effects that act through its anti-inflammatory activity. This study examines the effect and mechanism of baicalein on sepsis-induced cardiomyopathy (SIC).
METHODS:
A thorough screening of a small library of natural products, comprising 100 diverse compounds, was conducted to identify the most effective drug against lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. The core target proteins and their associated signaling pathways involved in baicalein's efficacy against LPS-induced myocardial injury were predicted by network pharmacology.
RESULTS:
Baicalein was identified as the most potent protective agent in LPS-exposed H9C2 cardiomyocytes. It exhibited a dose-dependent inhibitory effect on cell injury and inflammation. In the LPS-induced septic mouse model, baicalein demonstrated a significant capacity to mitigate LPS-triggered myocardial deficits, inflammatory responses, and ferroptosis. Network pharmacological analysis and experimental confirmation suggested that hypoxia-inducible factor 1 subunit α (HIF1-α) is likely to be the crucial factor in mediating the impact of baicalein against LPS-induced myocardial ferroptosis and injury. By combining microRNA (miRNA) screening in LPS-treated myocardium with miRNA prediction targeting HIF1-α, we found that miR-299b-5p may serve as a regulator of HIF1-α. The reduction in miR-299b-5p levels in LPS-treated myocardium, compared to the control group, was reversed by baicalein treatment. The reverse transcription quantitative polymerase chain reaction, Western blotting, and dual-luciferase reporter gene analyses together identified HIF1-α as the target of miR-299b-5p in cardiomyocytes.
CONCLUSION
Baicalein mitigates SIC at the miRNA level, suggesting the therapeutic potential of it in treating SIC through the regulation of miR-299b-5p/HIF1-α/ferroptosis pathway. Please cite this article as: Zhou WY, Du JK, Liu HH, Deng L, Ma K, Xiao J, Zhang S, Wang CN. Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway. J Integr Med. 2025; 23(5):560-575.
Flavanones/pharmacology*
;
Animals
;
MicroRNAs/genetics*
;
Lipopolysaccharides
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Ferroptosis/drug effects*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Mice, Inbred C57BL
;
Cardiomyopathies/etiology*
;
Cell Line
;
Sepsis/complications*
5.Progress of gastric cancer organoids in basic research and clinical application
Baoqing LIU ; Rong HUANG ; Yan LU ; Kai LI ; Ning ZHANG ; Changzheng LIU ; Wei SONG
Basic & Clinical Medicine 2024;44(9):1219-1222
Gastric cancer ranks fifth in global cancer mortality,which is highly aggressive and heterogeneous.How-ever,the research and treatment of gastric cancer is hindered by short of research models that may characterize the developmental properties of gastric cancer.Gastric cancer organoid is a multicellular three-dimensional structure de-veloped in vitro,which can mimic the structure and function of native gastric cancer.Gastric cancer organoids have great application potential and development prospects in establishing gastric cancer research models,mimicking the tumor microenvironment,high-throughput screening of drugs,discovering new therapeutic targets,predicting clinical therapeutic responses,and guiding individualized treatment.In this paper,the progress of gastric cancer or-ganoids in basic research and clinical application is reviewed aiming for promoting the progress of preclinical re-search and supporting the clinical treatment of gastric cancer.
6.Efferocytosis: A new therapeutic target for stroke.
Li GAO ; Anatol MANAENKO ; Feng ZENG ; Jingchen LI ; Lele LIU ; Ruichuan XIE ; Xiaohua ZHANG ; John H ZHANG ; Qiyong MEI ; Jiping TANG ; Qin HU
Chinese Medical Journal 2024;137(23):2843-2850
Efferocytosis refers to the process that phagocytes recognize and remove the apoptotic cells, which is essential for maintaining tissue homeostasis both in physiological and pathological conditions. Numerous studies have demonstrated that efferocytosis can prevent secondary necrosis and proinflammatory factor release, leading to the resolution of inflammation and tissue immunological tolerance in numerous diseases such as stroke. Stroke is a leading cause of death and morbidity for adults worldwide. Persistent inflammation triggered by the dead cells or cell debris is a major contributor to post-stroke brain damage. Effective efferocytosis might be an efficient strategy to minimize inflammation and restore brain homeostasis for neuronal regeneration and function recovery. In this review, we will discuss the phagocytes in the brain, the molecular mechanisms underlying efferocytosis, the role of efferocytosis in inflammation resolution, and the potential therapeutic applications targeting efferocytosis in stroke.
Humans
;
Stroke
;
Phagocytosis/physiology*
;
Inflammation
;
Apoptosis/physiology*
;
Animals
;
Phagocytes/physiology*
;
Brain/metabolism*
;
Efferocytosis
7.Safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy: A prospective, multi-center, single arm trial
Pengfei MA ; Sen LI ; Gengze WANG ; Xiaosong JING ; Dayong LIU ; Hao ZHENG ; Chaohui LI ; Yunshuai WANG ; Yinzhong WANG ; Yue WU ; Pengyuan ZHAN ; Wenfei DUAN ; Qingquan LIU ; Tao YANG ; Zuomin LIU ; Qiongyou JING ; Zhanwei DING ; Guangfei CUI ; Zhiqiang LIU ; Ganshu XIA ; Guoxing WANG ; Panpan WANG ; Lei GAO ; Desheng HU ; Junli ZHANG ; Yanghui CAO ; Chenyu LIU ; Zhenyu LI ; Jiachen ZHANG ; Changzheng LI ; Zhi LI ; Yuzhou ZHAO
Chinese Journal of Gastrointestinal Surgery 2023;26(10):977-985
Objective:To evaluate the safety of double and a half layered esophagojejunal anastomosis in radical gastrectomy.Methods:This prospective, multi-center, single-arm study was initiated by the Affiliated Cancer Hospital of Zhengzhou University in June 2021 (CRAFT Study, NCT05282563). Participating institutions included Nanyang Central Hospital, Zhumadian Central Hospital, Luoyang Central Hospital, First Affiliated Hospital of Henan Polytechnic University, First Affiliated Hospital of Henan University, Luohe Central Hospital, the People's Hospital of Hebi, First People's Hospital of Shangqiu, Anyang Tumor Hospital, First People's Hospital of Pingdingshan, and Zhengzhou Central Hospital Affiliated to Zhengzhou University. Inclusion criteria were as follows: (1) gastric adenocarcinoma confirmed by preoperative gastroscopy;(2) preoperative imaging assessment indicated that R0 resection was feasible; (3) preoperative assessment showed no contraindications to surgery;(4) esophagojejunostomy planned during the procedure; (5) patients volunteered to participate in this study and gave their written informed consent; (6) ECOG score 0–1; and (7) ASA score I–III. Exclusion criteria were as follows: (1) history of upper abdominal surgery (except laparoscopic cholecystectomy);(2) history of gastric surgery (except endoscopic submucosal dissection and endoscopic mucosal resection); (3) pregnancy or lactation;(4) emergency surgery for gastric cancer-related complications (perforation, hemorrhage, obstruction); (5) other malignant tumors within 5 years or coexisting malignant tumors;(6) arterial embolism within 6 months, such as angina pectoris, myocardial infarction, and cerebrovascular accident; and (7) comorbidities or mental health abnormalities that could affect patients' participation in the study. Patients were eliminated from the study if: (1) radical gastrectomy could not be completed; (2) end-to-side esophagojejunal anastomosis was not performed during the procedure; or (3) esophagojejunal anastomosis reinforcement was not possible. Double and a half layered esophagojejunal anastomosis was performed as follows: (1) Open surgery: the full thickness of the anastomosis is continuously sutured, followed by embedding the seromuscular layer with barbed or 3-0 absorbable sutures. The anastomosis is sutured with an average of six to eight stitches. (2) Laparoscopic surgery: the anastomosis is strengthened by counterclockwise full-layer sutures. Once the anastomosis has been sutured to the right posterior aspect of the anastomosis, the jejunum stump is pulled to the right and the anastomosis turned over to continue to complete reinforcement of the posterior wall. The suture interval is approximately 5 mm. After completing the full-thickness suture, the anastomosis is embedded in the seromuscular layer. Relevant data of patients who had undergone radical gastrectomy in the above 12 centers from June 2021 were collected and analyzed. The primary outcome was safety (e.g., postoperative complications, and treatment). Other studied variables included details of surgery (e.g., surgery time, intraoperative bleeding), postoperative recovery (postoperative time to passing flatus and oral intake, length of hospital stay), and follow-up conditions (quality of life as assessed by Visick scores).Result:[1] From June 2021 to September 2022,457 patients were enrolled, including 355 men and 102 women of median age 60.8±10.1 years and BMI 23.7±3.2 kg/m2. The tumors were located in the upper stomach in 294 patients, mid stomach in 139; and lower stomach in 24. The surgical procedures comprised 48 proximal gastrectomies and 409 total gastrectomies. Neoadjuvant chemotherapy was administered to 85 patients. Other organs were resected in 85 patients. The maximum tumor diameter was 4.3±2.2 cm, number of excised lymph nodes 28.3±15.2, and number of positive lymph nodes five (range one to four. As to pathological stage,83 patients had Stage I disease, 128 Stage II, 237 Stage III, and nine Stage IV. [2] The studied surgery-related variables were as follows: The operation was successfully completed in all patients, 352 via a transabdominal approach, 25 via a transhiatus approach, and 80 via a transthoracoabdominal approach. The whole procedure was performed laparoscopically in 53 patients (11.6%), 189 (41.4%) underwent laparoscopic-assisted surgery, and 215 (47.0%) underwent open surgery. The median intraoperative blood loss was 200 (range, 10–1 350) mL, and the operating time 215.6±66.7 minutes. The anastomotic reinforcement time was 2 (7.3±3.9) minutes for laparoscopic-assisted surgery, 17.6±1.7 minutes for total laparoscopy, and 6.0±1.2 minutes for open surgery. [3] The studied postoperative variables were as follows: The median time to postoperative passage of flatus was 3.1±1.1 days and the postoperative gastrointestinal angiography time 6 (range, 4–13) days. The median time to postoperative oral intake was 7 (range, 2–14) days, and the postoperative hospitalization time 15.8±6.7 days. [4] The safety-related variables were as follows: In total, there were 184 (40.3%) postoperative complications. These comprised esophagojejunal anastomosis complications in 10 patients (2.2%), four (0.9%) being anastomotic leakage (including two cases of subclinical leakage and two of clinical leakage; all resolved with conservative treatment); and six patients (1.3%) with anastomotic stenosis (two who underwent endoscopic balloon dilation 21 and 46 days after surgery, the others improved after a change in diet). There was no anastomotic bleeding. Non-anastomotic complications occurred in 174 patients (38.1%). All patients attended for follow-up at least once, the median follow-up time being 10 (3–18) months. Visick grades were as follows: Class I, 89.1% (407/457); Class II, 7.9% (36/457); Class III, 2.6% (12/457); and Class IV 0.4% (2/457).Conclusion:Double and a half layered esophagojejunal anastomosis in radical gastrectomy is safe and feasible.
9.Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies.
Zhenan DENG ; Meiling JIN ; Changxing OU ; Wei JIANG ; Jianping ZHAO ; Xiaoxia LIU ; Shenghua SUN ; Huaping TANG ; Bei HE ; Shaoxi CAI ; Ping CHEN ; Penghui WU ; Yujing LIU ; Jian KANG ; Yunhui ZHANG ; Mao HUANG ; Jinfu XU ; Kewu HUANG ; Qiang LI ; Xiangyan ZHANG ; Xiuhua FU ; Changzheng WANG ; Huahao SHEN ; Lei ZHU ; Guochao SHI ; Zhongmin QIU ; Zhongguang WEN ; Xiaoyang WEI ; Wei GU ; Chunhua WEI ; Guangfa WANG ; Ping CHEN ; Lixin XIE ; Jiangtao LIN ; Yuling TANG ; Zhihai HAN ; Kian Fan CHUNG ; Qingling ZHANG ; Nanshan ZHONG
Chinese Medical Journal 2023;136(2):230-232
10.Genome-wide analysis of AP2/ERF superfamily in Isatis indigotica.
Liang XIAO ; Jun-Ze REN ; Qing LI ; Bin YANG ; Zhen-Jiang LIU ; Rui-Bing CHEN ; Lei ZHANG
Journal of Integrative Medicine 2023;21(1):77-88
OBJECTIVE:
AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering.
METHODS:
To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses.
RESULTS:
One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses.
CONCLUSION
This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.
Abscisic Acid
;
Isatis/genetics*
;
Multigene Family
;
Phylogeny
;
Homeodomain Proteins/genetics*
;
Genome, Plant


Result Analysis
Print
Save
E-mail