1.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
2.Role of Peripheral 5-hydroxytryptamine in Toll-like Receptor 4-mediated Diabetes Mellitus Type 2
Yi-Ying ZHANG ; Ping ZHANG ; Bo YANG ; Xiao-Tong CHANG
Progress in Biochemistry and Biophysics 2025;52(5):1070-1080
In recent years, the prevalence of diabetes has continued to rise, with diabetes mellitus type 2 (T2DM) being the most common form. T2DM is characterized by chronic low-grade inflammation and disruptions in insulin metabolism. Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that, upon activation, upregulates pro-inflammatory cytokines via the nuclear factor κB (NF‑κB) pathway, thereby contributing to the pathogenesis of T2DM. Peripheral 5-hydroxytryptamine (5-HT), primarily synthesized by enterochromaffin (EC) cells in the gut, interacts with 5-hydroxytryptamine receptors (5-HTRs) in key insulin-target tissues, including the liver, adipose tissue, and skeletal muscle. This interaction influences hepatic gluconeogenesis, fat mobilization, and the browning of white adipose tissue. Elevated peripheral 5-HT levels may disrupt glucose and lipid metabolism, thereby contributing to the onset and progression of T2DM. Within mitochondria, 5-HT undergoes degradation and inactivation through the enzymatic action of monoamine oxidase A (MAO-A), leading to the generation of reactive oxygen species (ROS). Excessive ROS production and accumulation can induce oxidative stress, which may further contribute to the pathogenesis of T2DM. Platelets serve as the primary reservoir for5-HT in the bloodstream. The activation of the TLR4 signaling pathway on the platelet surface, coupled with reduced expression of the 5-HT transporter on the cell membrane, leads to elevated serum 5-HT levels, potentially accelerating the progression of T2DM. Therefore, inhibition of TLR4 and reduction of peripheral 5-HT levels could represent promising therapeutic strategies for T2DM. This review explores the synthesis, transport, and metabolism of peripheral 5-HT, as well as its role in TLR4-mediated T2DM, with the aim of providing novel insights into the clinical diagnosis, treatment, and evaluation of T2DM.
3.Mechanism of total flavone of Abelmoschus manihot in treating ulcerative colitis and depression via intestinal flora-glycerophospholipid metabolism- macrophage polarization pathway.
Chang-Ye LU ; Xiao-Min YUAN ; Lin-Hai HE ; Jia-Rong MAO ; Yu-Gen CHEN
China Journal of Chinese Materia Medica 2025;50(5):1286-1297
This study delves into the mechanism of total flavone of Abelmoschus manihot(TFA) in treating ulcerative colitis(UC) and depression via inhibiting M1 polarization of macrophages and reshaping intestinal flora and glycerolphospholipid metabolism. The study established a mouse model of UC and depression induced by chronic restraint stress(CRS) and dextran sulfate sodium(DSS). The fecal microbiota transplantation(FMT) experiment after TFA intervention was conducted. Mice in the FMT donor group were modeled and treated, and fecal samples were taken to prepare the bacterial solution. Mice in the FMT receptor group were treated with antibiotic intervention, and then administered bacterial solution by gavage from mice in the donor group, followed by UC depression modeling. After the experiment, behavioral tests were conducted to evaluate depressive-like behaviors by measuring the levels of 5-hydroxytryptamine(5-HT) and brain-derived neurotrophic factor(BDNF) in the hippocampus of mice. The levels of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β)in the brain and colon tissue of mice were also measured, and the polarization status of macrophages was evaluated by measuring the mRNA levels of CD86 and CD206. 16S ribosomal RNA(16S rRNA) sequencing technology was used to analyze changes in the intestinal flora of mice. Wide target lipidomics was used to detect serum lipid metabolite levels in mice after FMT,and correlation analysis was conducted between lipids and differential intestinal flora significantly regulated by TFA. In vitro experiments, representative glycerophospholipid metabolites and glycerophospholipid inhibitors were used to intervene in Raw264.7 macrophages, and the mRNA levels of TNF-α,IL-6,IL-1β,CD86,and CD206 were detected. The results showed that TFA and FMT after intervention could significantly improve depressive-like behavior and intestinal inflammation in mice with UC and depression, significantly downregulate pro-inflammatory cytokines and CD86 mRNA expression in brain and colon tissue, inhibiting M1 polarization of macrophages, and significantly upregulate CD206 mRNA expression, promoting M2 polarization of macrophages. In addition, the high-dose group had a more significant effect. After TFA intervention, FMT significantly corrected the metabolic disorder of glycerophospholipids in mice with UC and depression, and there was a significant correlation between differential intestinal flora and glycerophospholipids. In vitro experiments showed that glycerophospholipid metabolites, especially lysophosphatidylcholine(LPC),significantly upregulated pro-inflammatory cytokines and CD86 mRNA expression, promote M1 polarization of macrophages, while glycerophospholipid inhibitors had the opposite effect. The results indicate that TFA effectively treats depression and UC by correcting intestinal flora dysbiosis and reshaping glycerophospholipid metabolism, thereby inhibiting M1 polarization of macrophages.
Animals
;
Mice
;
Gastrointestinal Microbiome/drug effects*
;
Abelmoschus/chemistry*
;
Macrophages/metabolism*
;
Colitis, Ulcerative/immunology*
;
Flavones/administration & dosage*
;
Male
;
Depression/genetics*
;
Glycerophospholipids/metabolism*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
4.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
5.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
6.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
7.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
8.Mechanism of Sorbus tianschanica in regulating asthmatic airway inflammation through TLR4/PI3K/Akt/MMP9 signaling pathway.
Wen-Kai WANG ; Jun-Min CHANG ; Xiao-Li MA ; Gai-Ru LI
China Journal of Chinese Materia Medica 2025;50(15):4304-4314
To investigate the effects and mechanisms of the water extract from Sorbus tianschanica(STE) on asthmatic airway inflammation, the mice were randomly divided into six groups, including a control group, a model group, a positive drug dexamethasone group(2 mg·kg~(-1)), a low-dose STE group(1 g·kg~(-1)), a medium-dose STE group(2 g·kg~(-1)), and a high-dose STE group(4 g·kg~(-1)). Except for the control group, all groups were subjected to ovalbumin induction to establish an asthma mouse model. The anti-inflammatory effects of STE were evaluated by examining pathological changes in lung tissue and measuring the levels of interleukin(IL)-4 and IL-5 in bronchoalveolar lavage fluid(BALF). Transcriptomic and proteomic methods were further employed to analyze differentially expressed genes and proteins, as well as their associated signaling pathways in lung tissue. Subsequently, the expression changes of key genes were verified by reverse transcription-quantitative polymerase chain reaction(RT-qPCR), and immunohistochemistry and Western blot methods were used to explore the regulatory mechanisms of STE in the pathogenesis of asthma in mice. Molecular docking was performed by using AutoDock Vina software to evaluate the binding affinity of the main active components in STE with the target proteins, including phosphatidylinositol-3-kinase catalytic subunit α(PIK3CA), Toll-like receptor 4(TLR4), protein kinase B1(Akt1), and matrix metallopeptidase 9(MMP9). The results showed significant inflammatory cell infiltration and fibrous tissue proliferation in the lung tissue of mice in the model group. However, these pathological changes were markedly reduced following STE intervention. Compared with those of the control group, the expression levels of IL-4 and IL-5 in the BALF of the model group were significantly increased but notably decreased following STE intervention. Transcriptomic and proteomic analyses identified key genes and proteins associated with allergic asthma, including tumor necrosis factor(TNF), IL-6, TLR4, PIK3CA, and MMP9. RT-qPCR validation revealed that high-dose STE intervention significantly downregulated the expressions of PIK3CA, IL-6, Akt1, MMP9, IL-13, nuclear factor-kappa B(NF-κB), TNF, CXC motif chemokine ligand 1(CXCL1), and TLR4 mRNAs and significantly upregulated the expression of signal transducer and activator of transcription 1(STAT1) mRNA. Western blot and immunohistochemical analyses confirmed that STE significantly downregulated the expressions of MMP9, TLR4, PIK3CA, and phosphorylated protein kinase B(p-Akt) in lung tissue of asthmatic mice. Moreover, molecular docking demonstrated that kaempferol-3,7-diglucoside, isoquercitrin, quercetin-3-gentiobioside, and hyperoside in STE exhibited stable binding affinities with PIK3CA, TLR4, Akt1, and MMP9, suggesting that the active components may exert anti-inflammatory effects by targeting and modulating asthma-related signaling pathways. In summary, STE exerts anti-asthmatic effects by inhibiting the expressions of PIK3CA, MMP9, p-Akt, and TLR4 and regulating the TLR4/PI3K/Akt/MMP9 signaling pathway.
Animals
;
Asthma/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Mice, Inbred BALB C
;
Drugs, Chinese Herbal/administration & dosage*
;
Female
;
Humans
;
Lung/immunology*
;
Male
9.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
10.Prediction of Hemifacial Spasm Re-Appearing Phenomenon after Microvascular Decompression Surgery in Patients with Hemifacial Spasm Using Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging
Seung Hoon LIM ; Xiao-Yi GUO ; Hyug-Gi KIM ; Hak Cheol KO ; Soonchan PARK ; Chang-Woo RYU ; Geon-Ho JAHNG
Journal of Korean Neurosurgical Society 2025;68(1):46-59
Objective:
: Hemifacial spasm (HFS) is treated by a surgical procedure called microvascular decompression (MVD). However, HFS re-appearing phenomenon after surgery, presenting as early recurrence, is experienced by some patients after MVD. Dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) and two analytical methods : receiver operating characteristic (ROC) curve and machine learning, were used to predict early recurrence in this study.
Methods:
: This study enrolled 60 patients who underwent MVD for HFS. They were divided into two groups : group A consisted of 32 patients who had early recurrence and group B consisted of 28 patients who had no early recurrence of HFS. DSC perfusion MRI was undergone by all patients before the surgery to obtain the several parameters. ROC curve and machine learning methods were used to predict early recurrence using these parameters.
Results:
: Group A had significantly lower relative cerebral blood flow than group B in most of the selected brain regions, as shown by the region-of-interest-based analysis. By combining three extraction fraction (EF) values at middle temporal gyrus, posterior cingulate, and brainstem, with age, using naive Bayes machine learning method, the best prediction model for early recurrence was obtained. This model had an area under the curve value of 0.845.
Conclusion
: By combining EF values with age or sex using machine learning methods, DSC perfusion MRI can be used to predict early recurrence before MVD surgery. This may help neurosurgeons to identify patients who are at risk of HFS recurrence and provide appropriate postoperative care.

Result Analysis
Print
Save
E-mail