1.Textual Research of Key Information of Classic Formula Xieqingwan Based on Ancient and Modern Literature
Yujie CHANG ; Lyuyuan LIANG ; Jialei CAO ; Xinghang LYU ; Wenxi WEI ; Xiaofang WANG ; Huizhen ZHANG ; Sai REN ; Mengqi WANG ; Bingqi WEI ; Bingxiang MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):226-234
ObjectiveThis paper aims to systematically collect and organize ancient and modern clauses and studies containing Xieqingwan, excavate and analyze the key information of Xieqingwan, and provide a reference for facilitating the development of the classic formula Xieqingwan. MethodsThe composition, dosage, decocting methods, usage, and other key information of Xieqingwan in ancient traditional Chinese medicine books were collected and analyzed by means of literature research and metrological methods. The modern clinical application of Xieqingwan was summarized. ResultsA total of 42 pieces of effective data involving 32 ancient traditional Chinese medicine books were collected. Xieqingwan was first recorded in Xiaoer Yaozheng Zhijue. The drug origin of this formula is basically clear in the ancient traditional Chinese medicine books. The modern drug usage and decocting method were as follows: Angelicae Sinensis Radix, Gentianae Radix et Rhizoma, Chuanxiong Rhizoma, Gardenia seeds, Radix et Rhizoma Rhei, Notopterygii Rhizoma et Radix, and Saposhnikoviae Radix were grounded to fine powder, decocted with honey, and finally formed into pills with the size of a chicken head (1.5 g). It was suggested that half a pill or one pill were taken for one dose with warm Lophatheri decoction and sugar. The indications and clinical application had developed from the recordings in Xiaoer Yaozheng Zhijue and evolved from pediatrics to ophthalmic otolaryngology, neurology, dermatology, digestion, and respiratory diseases. The main pathogenesis of these diseases is heat in the liver meridian and is treated. The effect of Xieqingwan is "clearing away heat and toxicity, removing fire and relaxing the bowels, and dispersing swelling and relieving pain". It is recommended to use the corresponding preparation methods in the 2020 Edition of Pharmacopoeia of the People's Republic of China. Modern clinical studies are centered around the clinical application of Xieqingwan, which is often modified and used in treating Tourette syndrome, herpes, febrile convulsion, sleepwalking, and insomnia. ConclusionThis paper conducts a thorough textual research of the key information of Xieqingwan, induces its historic evolution, and confirms its key information, so as to provide a reference for the future development of Xieqingwan.
2.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
3.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
4.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
5.Visualization analysis of macrophage polarization in tissue repair process
Jinxia CHANG ; Yufei LIU ; Shaohui NIU ; Chang WANG ; Jianchun CAO
Chinese Journal of Tissue Engineering Research 2025;29(7):1486-1496
BACKGROUND:During tissue repair and regeneration,macrophages exhibit multiple activities such as promoting inflammation,anti-inflammation,fibrosis,and wound healing at various stages of tissue damage.The heterogeneity and balanced polarization of macrophages are decisive in organ repair. OBJECTIVE:To explore the research hotspots and development trends in the field of macrophage polarization in tissue repair through visualization analysis methods,as well as the research level of global scientific and clinical workers in this field. METHODS:Using bibliometric analysis methods,this study employed Citespace literature visualization analysis software and VOSviewer tools,retrieving related literature from 2013 to 2023 in the Web of Science Core Collection's Science Citation Index Expanded(SCI-Expanded)and Social Sciences Citation Index Expanded(SSCI-Expanded)databases.The analysis results were presented in a dynamic map format,revealing the main trends and focuses of the research. RESULTS AND CONCLUSION:The number of publications in this field had dramatically increased from 2013 to 2023,with a significant rise starting in 2017.Chinese researchers had the highest number of publications,with 642 papers,while American researchers began focusing on this field early on.Professor Elisseeff Hennifer H had made a substantial contribution to the research in this area.Shanghai Jiao Tong University had produced the most publications.In recent years,keywords such as"hyaluronic acid"and"regulation"had been prevalent.Macrophage polarization research in tissue repair primarily concentrates on its multifunctional regulatory mechanisms,interactions with other cell types,and its behavior under specific pathological conditions.The main research areas include the role of macrophages in wound healing,cardiovascular diseases,chronic inflammation,tumor microenvironments,and regenerative medicine.A deeper understanding of the multifunctionality and polarization mechanisms of macrophages can lead to the development of new therapeutic strategies to enhance tissue repair and regeneration,thereby improving patient treatment outcomes.
6.Research advances in mechanism of salvianolic acid B in treating coronary heart disease.
Hong-Ming CAO ; Hui SUN ; Chang LIU ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(6):1449-1457
Coronary heart disease is a cardiovascular disease that affects coronary arteries. It presents high incidence and high mortality worldwide, bringing a serious threat to human health and quality of life. Salviae Miltiorrhizae Radix et Rhizoma derived from Salvia miltiorrhiza is widely used in the treatment of cardiovascular diseases, such as coronary heart disease. Salvianolic acid B is an active component in Salviae Miltiorrhizae Radix et Rhizoma extracts, and studies have shown that it has anti-inflammatory, antioxidant, apoptosis-and autophagy-regulating, anti-fibrosis, and metabolism-modulating effects. This article reviews the research progress regarding the therapeutic effect of salvianolic acid B on coronary heart disease in the recent decade. It elaborates on the role and mechanism of salvianolic acid B in treating coronary heart disease from multiple perspectives, such as the inhibition of thrombosis, improvement of blood circulation, reduction of myocardial cell injury, and inhibition of cardiac remodeling. This article provides a theoretical basis for the application of Chinese medicinal materials and TCM prescriptions containing salvianolic acid B in the treatment of coronary heart disease.
Humans
;
Benzofurans/administration & dosage*
;
Coronary Disease/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Salvia miltiorrhiza/chemistry*
;
Animals
;
Depsides
7.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
8.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
9.Targeted delivery of BMPR2 mRNA attenuates pulmonary arterial hypertension by reversing pulmonary vascular remodeling.
Yan CAO ; Runyuan WANG ; Xiaoyan HE ; Yan DING ; Yan CHANG ; Runyue YANG ; Guisheng ZHONG ; Huiying YANG ; Jianfeng LI
Acta Pharmaceutica Sinica B 2025;15(10):5416-5430
Disrupted bone morphogenetic protein type 2 receptor (BMPR2) signaling in endothelial cells drives pulmonary arterial hypertension (PAH). However, targeted recovery of this signaling pathway by lipid nanoparticles (LNPs) has not been explored as a therapy. Here, we employed Design of Experiments to optimize the delivery efficiency of LNPs targeting pulmonary endothelial cells developed by our laboratory, resulting in a remarkable 35-fold increase in a simplified three-component formulation without helper lipids. Administration of BMPR2 mRNA LNPs effectively reversed established PAH in two experimental rat models (monocrotaline or SU5416-hypoxia) by reversing pulmonary vascular remodeling. Specifically, BMPR2 mRNA LNPs replenished the expression of BMPR2 protein and subsequently activated downstream pathways, as confirmed by elevated levels of p-SMAD1/5/9 and ID1 proteins. The relief of pulmonary arterial occlusion was demonstrated by thinned pulmonary arterial media and decreased proportion of full muscularized vessels. Alleviation of right ventricular hypertrophy was indicated by declined Fulton index, the cross-sectional area of right ventricular cardiomyocytes as well as collagen deposition. Effective recovery of right ventricular function was evidenced by increased pulmonary artery flow acceleration time/pulmonary artery flow ejection time ratio. These findings underscore the potential of restoring BMPR2 signaling through pulmonary endothelial cell-specific LNPs for treating PAH.
10.Left spermatic vein transposition to great saphenous vein:preliminary experience of a novel bypass procedure in 8 patients in the treatment of left varicocele secondary to nutcracker syndrome
Guoxiong LUO ; Fudong LI ; Chang YU ; Zhigang CAO ; Chunlei ZHANG ; Bin ZHANG ; Dehui CHANG
Journal of Modern Urology 2025;30(4):333-338
Objective: To evaluate the efficacy of the left spermatic vein transposition to the great saphenous vein in treating left varicocele (VC) secondary to nutcracker syndrome (NCS). Methods: Clinical data of 8 patients treated during Feb.2020 and Feb.2023 in our hospital were retrospectively analyzed.A meticulous preoperative evaluation of the vascular status of the spermatic vein and the great saphenous vein was performed using color Doppler ultrasound.A spermatic vein-great saphenous vein shunt surgery was performed in patients who were strictly selected.The clinical symptoms and hemodynamics of renal vein were compared before and after operation. Results: The median age of patients was 23.5(18-33) years.There was a notable reduction in post-exercise scrotal and lower back pain in all patients,and the score of scrotal pain decreased to 0 in 7 patients. The median quantification of urinary protein was 352.8(54.4-687.3) mg prior to surgical intervention,which significantly diminished to 125.5(25.9-255.1) mg 6 months after operation.Notably,3 cases of preoperative positive urine occult blood tests were undetectable in the subsequent postoperative assessments.The median peak blood flow velocity at the site of stenosis in the left renal vein measured at 74.4(48.7-117.6) cm/s preoperatively,subsequently reduced to 45.1(25.5-61.2) cm/s postoperatively.During the 6-month follow-up,no recurrence of varicocele,vascular anastomotic stenosis or thrombosis were observed. Conclusion: Our research indicates that spermatic vein to great saphenous vein bypass is safe and feasible in the treatment of left varicocele secondary to nutcracker syndrome for strictly selected patients,which can effectively alleviate renal vein congestion without significant complications.

Result Analysis
Print
Save
E-mail